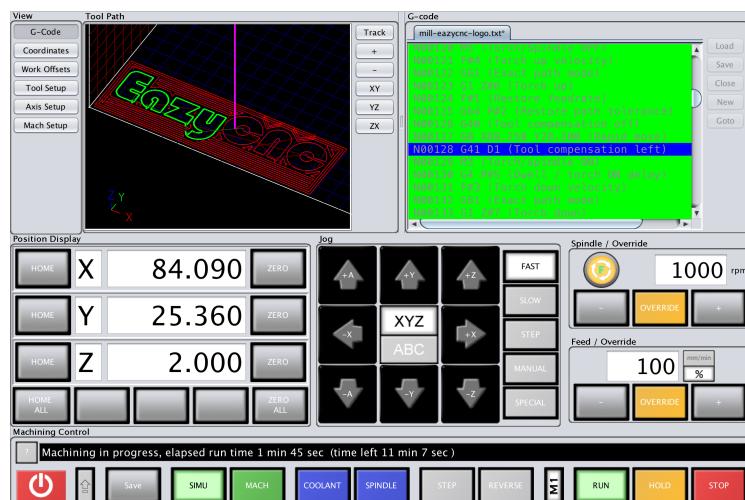


SpareTimeLabs

eazycnc@eazycnc.com



EazyCNC – Manual

Revision 1

for

EazyCNC version 2.0.37

August 29, 2021

Contents

1	Safety First!	6
2	Introduction to CNC-Machining	8
2.1	Overview of a CNC Machining System	8
2.2	Understanding Real-Time	8
2.3	Understanding Stepper Motors	9
3	Hardware and Software Requirements	11
3.1	Dedicated Computer	11
3.2	Hardware	11
3.3	Raspberry Pi Notes	12
3.3.1	Why Raspberry Pi	12
3.3.2	Get a larger touchscreen	12
3.3.3	Virtual keyboard or not!	13
3.3.4	Start EazyCNC without a keyboard or a mouse	13
3.3.5	Shutdown Pi cleanly and safely	13
3.3.6	Only use fresh Raspberries	13
3.3.7	SSH is handy	13
3.3.8	(Re)invent your identity	14
3.3.9	Fast and furious	14
3.3.10	Sharing folders via Samba	14

<i>CONTENTS</i>	2
3.4 Operating System	14
3.5 Anti-Virus Software	15
4 Installation	16
4.1 Getting the Application	16
4.2 Installing the Application	16
5 Overview of EazyCNC	18
5.1 Moving Around in the Program	18
6 Setting Up and Configuring	21
6.1 Saving Your Setup	21
6.2 Setting up USB permission in Linux	22
6.3 Updating Motor Controller Firmware	23
6.3.1 Firmware -popup menu	24
6.3.2 Testing the Motor Controller Connection	24
6.4 Enabling Debug Logs	25
6.4.1 Enable Java Console to file logging -checkbox	25
6.4.2 Enable TOAD4 communication logging -checkbox	25
6.5 Setting up the User Interface	25
6.5.1 Units -popup menu	26
6.5.2 DRO-format -entry field	27
6.5.3 Update rate -entry field	27
6.5.4 Language -popup menu	27
6.5.5 Machined Path -settings	27
6.5.6 Planned Path -settings	27
6.5.7 Tool Display -settings	28
6.5.8 Axis Display -settings	28

<i>CONTENTS</i>	3
6.5.9 Spacing -entry field	28
6.5.10 Width -entry field	28
6.5.11 Grid -popup menu	28
6.5.12 Min/Max -entry fields	28
6.5.13 Posision -entry fields	28
6.5.14 Color -button	28
6.6 Options	29
6.6.1 G-Code Options	29
6.6.2 Incremental IJK -checkbox	29
6.6.3 Incremental XYZ -checkbox	29
6.6.4 G4 P in msec -checkbox	30
6.6.5 Auto Functions	30
6.6.6 Auto SPINDLE OFF -checkbox	30
6.6.7 Auto COOLANT OFF -checkbox	30
6.6.8 ZERO DRO on RUN	30
6.6.9 N-Axis auto zero -check boxes	30
6.6.10 Screen	30
6.6.11 Window	31
6.6.12 Layout	31
6.6.13 Shutdown on Quit -checkbox	32
6.6.14 On-Screen Keyboard -checkbox	32
6.6.15 Export/Import screen	32
6.6.16 File format -popup menu	32
6.6.17 Number format -entry field	33
6.6.18 List item Separator -popup menu	33
6.6.19 G41/G42 code options	33

<i>CONTENTS</i>	4
6.6.20 Use round join -radiobutton	33
6.6.21 Use miter join -radiobutton	33
6.7 Setting up Inputs and Outputs	34
6.7.1 Probe Input -panel	34
6.7.2 Spindle Speed -panel	34
6.7.3 Min Speed -entry field	35
6.7.4 Max Speed -entry field	35
6.8 Configuring Motors and Axes	35
6.8.1 Motor Config -panel	36
6.8.2 Axis Limits -panel	43
6.8.3 Safe Z -panel	44
6.8.4 Jogging -panel	44
6.9 Setting the Motion limits	46
6.9.1 Velocity -entry field	46
6.9.2 Acceleration -entry field	47
6.9.3 Path tolerance -entry field	47
6.9.4 Z-scaler -entry field	47
6.9.5 Update Period -entry field	47
6.10 Shortcuts setup	48
6.11 Test screen	49
6.11.1 Inputs -panel	49
6.11.2 Outputs -panel	50
6.11.3 Test -panel	51
6.11.4 Pre-requisites	51
6.11.5 The Test run	51
6.12 Info screen	52

<i>CONTENTS</i>	5
7 Operating Your CNC Machine	54
7.1 Using Keyboard and Joystick	54
7.2 Using Manual Pulse Generator (MPG) / CNC Pendant	55
7.3 Simulation versus Cutting Metal	56
7.4 Status Display	57
7.5 Interactive Execution of G-code	57
7.6 G-code display	58
7.6.1 Loading G-code for execution	58
7.6.2 The Goto -button	58
7.6.3 Editing G-code	59
7.7 Toolpath display	59
7.7.1 Controlling the toolpath display	61
7.8 Coordinate displays aka DROs	61
7.9 Jogging	62
7.9.1 MODE++ -button	63
7.9.2 FAST and SLOW jog modes	63
7.9.3 Step jog modes x0,x1,x10,x100 and x1000	63
7.9.4 MANUAL -button	64
7.9.5 SPECIAL -button	64
7.9.6 SAFE Z -button	64
7.10 Finding your bearings i.e. coordinates	65
7.11 The easy and lazy way	66
7.12 Going pro	66
7.13 Adjusting Feed Rate	67
7.14 Controlling the Spindle	67
7.15 Machining!	68

CONTENTS	6
7.15.1 Starting the machining	68
7.15.2 Pausing the machining	68
7.15.3 Stepping and Reversing	69
7.15.4 Stopping	70
7.16 Setting up and managing the coordinate systems	70
7.16.1 Coordinate axes	70
7.17 XYZ versus ABC axes	71
7.17.1 Coordinates in G-codes	71
7.17.2 Work/Fixture Coordinate System/Offsets	71
7.17.3 Selecting the active coordinate system	73
7.17.4 Changing offsets/setting up the coordinates	73
7.17.5 Setting the XY-coordinate system origin via touching	73
7.17.6 Setting the Z-coordinate system origin via touching	73
7.17.7 Using an electronic Probe to Touch	74
7.17.8 Using a touch plate to Touch	75
7.17.9 Probe Calibration	76
7.18 Setting up and managing tool information	77
7.18.1 Setting the current tool	78
7.18.2 Managing the tool diameter and length	79
7.18.3 Setting the tool length via touching	79
7.18.4 Using an Automatic Tool Setter	79
7.18.5 Editing tool setup in a spreadsheet	80
7.19 User Functions	81
7.19.1 Built-in User Functions	82
8 Cutter compensation	84
8.1 Tool length compensation	84

CONTENTS	7
8.2 Cutter diameter compensation	84
8.2.1 Cutter compensation example - cutting part's outline	85
8.2.2 Cutter compensation example - cutting holes and openings	87
9 G-code reference	88
9.1 The Basics	88
9.1.1 Operator Messages	89
9.1.2 Debug Messages	89
9.2 Numbers, Expressions and Parameters	90
9.2.1 Numbers	90
9.2.2 Expressions	90
9.2.3 Parameters	91
9.3 G-codes and M-codes	92
9.3.1 Length Units, G20,G21 codes	92
9.3.2 Coordinate Axes	92
9.3.3 Setting the length units – G20,G21	93
9.3.4 Feedrate – F-word	93
9.3.5 Spindle speed – S-word	93
9.3.6 Spindle on/off – M3,M4,M5 codes	93
9.3.7 Coolant on/off – M7,M8,M9 codes	94
9.3.8 Select a tool – T-word	94
9.3.9 Dwelling – G44-code	94
9.3.10 Coordinates/moving axes – XYZABC -words	95
9.3.11 Motion mode – G0,G1,G2 and G3 codes	95
9.3.12 Rapid positioning – G0 code	96
9.3.13 Linear interpolation – G1 code	96
9.3.14 Clockwise Arc interpolation – G2 code	96

CONTENTS	8
9.3.15 Counter Clockwise Arc interpolation – G3 code	97
9.3.16 Perform probing move – G31	97
9.3.17 Pause Machining – M0,M1	97
9.3.18 Stop Machining – M2	98
9.4 Coordinate systems	98
9.4.1 Scaling – G50,G51 codes	98
9.4.2 Incremental mode – G90,G91 codes	99
9.4.3 Polar coordinate mode – G15,G16 codes	99
9.4.4 Temporary coordinate system offsets – G52	100
9.4.5 Temporary coordinate system offsets – G92,G92.1,G92.2,G92.3 codes	100
9.4.6 Coordinate system rotation – G68,G69 codes	100
9.4.7 Active plane – G17,G18,G19 codes	101
9.4.8 Tool length compensation – G43,G44,G49 codes	101
9.4.9 Work/fixture offsets – G54,G55,G56,G57,G58,G59 codes	102
9.4.10 Absolute coordinates – G53 code	102
9.4.11 Cutter radius compensation – G40,G41,G4 codes	102
9.4.12 Feedrate mode – G93,G94,G95 codes	103
9.4.13 Feedrate override on/off – M48,M49 codes	103
9.4.14 Tool change – M6 code	103
9.4.15 Tool length compensation – G43,G44,G49 codes	104
9.4.16 Path mode – G61,G61.1,G64 codes	104
9.4.17 Incremental XYZ mode – G90,G91 codes	104
9.4.18 Incremental IJK mode – G90.1,G91.1 codes	105
9.4.19 Set tool table – G10 L1 code	105
9.4.20 Set work/fixture offsets – G10 L2 code	105
9.5 Canned Drilling Cycles	106

CONTENTS	9
9.5.1 Cancel Canned Cycle – G80 code	107
9.5.2 Canned Cycle Return level – G98,G99 codes	107
9.5.3 High Speed Peck Drilling – G73 code	107
9.5.4 Drilling – G81 code	107
9.5.5 Spot Facing – G82 code	108
9.5.6 Peck Drilling – G83 code	108
9.5.7 Boring – G85 code	108
9.6 Using subroutines – M98/M99	108
9.6.1 Call subroutine – M98 code	108
9.6.2 End of subroutine – M99 code	109
.1 Appendices	110
 A Revision History	111
 B Supported G-codes	112
 C Supported MPG pendants	115
C.1 XHC WHB04 Pendant/MPG	116
C.1.1 WHB04 Controls	116
C.1.2 WHB04 Display	116
C.1.3 WHB04 Wheel	117
C.1.4 Step++ -key	118
C.1.5 Probe XY -key	118
C.1.6 'Probe Z' -key	119
C.1.7 Spindle -key	119
C.1.8 Start/Pause -key	119
C.1.9 Stop -Key	119
C.1.10 '=1/2' -key	119

<i>CONTENTS</i>	10
C.1.11 'Goto Origin' -key	120
C.1.12 '=0' -key	120
C.1.13 Safe Z -key	120
C.1.14 Reset -key	120
C.1.15 Rewind -key	120
C.2 XHC WHB04B Pendant / MPG	121
C.2.1 WHB04B Controls	121
C.2.2 Display	121
C.2.3 Keypad	122
C.2.4 Axis Selector	122
C.2.5 WHB04 Wheel	123
C.2.6 Step Selector	124
C.2.7 Reset -Key	124
C.2.8 Stop -Key	124
C.2.9 Start / Run -key	124
C.2.10 Macro-1 [Feed+]-key	125
C.2.11 Macro-2 [Feed-]-key	125
C.2.12 Macro-3 [Spindle+] -key	125
C.2.13 Macro-4 [Spindle-]-key	125
C.2.14 Macro-5 [M-HOME]-key	125
C.2.15 Macro-6 [Safe-Z]-key	126
C.2.16 Macro-7 [W-HOME]-key	126
C.2.17 Macro-8 [S-ON/OFF]-key	126
C.2.18 Fn -key	126
C.2.19 Macro-9 [Probe-Z]-key	126
C.2.20 Macro-10	126

C.2.21 Continuous -key	126
C.2.22 Step -key	126

List of Tables

6.1	Motors versus configuration jumpers	40
6.2	Jumpers versus Step Mode	40
7.1	Keyboard and Joystick Shortcuts	55
9.1	Mathematical functions	91
9.2	Coordinate transformations	98
B.1	A simple longtable example	112

List of Figures

2.1	a CNC Machining System Overview	8
5.1	EazyCNC Main Screen – the G-code view	19
5.2	The view selection buttons	20
6.1	The User Interface setup screen	26
6.2	The Options setup screen	29
6.3	The screen toggle button	31
6.4	The on-screen virtual keyboard	32
6.5	The Input/Ouput setup screen	34
6.6	Axis Setup screen	36
6.7	The Motion Limits screen.	46
6.8	The Shortcuts setup screen.	49
6.9	The Redefine Shortcut screen.	49
6.10	The Shortcuts setup screen.	50
6.11	The System Info screen	53
7.1	The Shift Lock -button	54
7.2	The operating mode control and indicator buttons	57
7.3	The status/error display	57
7.4	The G-code editor and display panel	58
7.5	The toolpath display panel	60

<i>LIST OF FIGURES</i>	14
7.6 The G-code editor and display panel	61
7.7 The Digital Readouts	62
7.8 The Jog control buttons	65
7.9 The Feed Override controls	67
7.10 The Spindle controls	68
7.11 The G-code execution control buttons	68
7.12 The M1-pause switch	69
7.13 The step and reverse execution control buttons	69
7.14 The Coordinate axes	70
7.15 The Coordinates screen.	72
7.16 The Work Offsets screen in Edge Finder -mode.	72
7.17 The Work Offsets screen in Probe -mode.	74
7.18 The Work Offsets screen in Touch Plate -mode.	75
7.19 The Work Offsets screen in Probe Calibration -mode.	76
7.20 The Tool Setup screen.	77
7.21 The Tool Setup screen when the 'Use PROBE to Touch' is enabled.	80
7.22 The User Function buttons	81
8.1 G-code path versus compensated cutter path	86
8.2 Cutter compensation detail	86
8.3 G-code path versus compensated cutter path	87
9.1 Coordinate axes of a 3-axis CNC System	92
C.1 WHB04 Pendant/MPG	116
C.2 WHB03 Keypad	117
C.3 WHB04 Display	117
C.4 WHB04B Pendant / MPG	121

C.5	WHB04B Display	122
C.6	WHB04B Keypad	123
C.7	WHB04B Axis Selector	123
C.8	WHB04B Step Selector	124

Preface

Disclaimer

EazyCNC is program to control the operation of a CNC-Machine Tool.

TOAD4 is a microprocessos based controller board for controlling stepper motors.

EazyCNC and TOAD4 are intended for the hobbyist, they are not intended for for professional/commercial use.

Any machine tool is potentially dangerous.

All electrical system have the potential to cause an electric shock or a fire hazard.

All motorized systems can cause serious personal injury or damage to property.

All computer programs have design or implementation flaws (bugs) some of which can cause serious malfunction of the system.

Most countries and states have regulations and standards that govern the design, construction, use, deployment and placing on the market of electrical and mechanical equipment, including the software used to control them.

No safety of design or construction or programming nor warranty is implied, instead it is the responsibility of whoever uses or deploys EazyCNC and/or TOAD4 to ensure that he/she understands the implications of using EazyCNC and/or TOAD4 and to comply with any legislation and codes of practice applicable to his/hers country or state. Further it is his/hers responsibility to ensure the safety of the system at all times.

If you are in any doubt, you must seek guidance from a professionally qualified expert rather than risk injury or liability to yourself or to others.

SpareTimeLabs or Kustaa Nyholm cannot accept any responsibility resulting from the design, construction or use of EazyCNC and/or TOAD4.

All names of products and trademarks used in this manual are for example purposes only, no endorsement of any of them by SpareTimeLabs nor endorsement of EazyCNC or TOAD4 by their respective owners is implied.

Chapter 1

Safety First!

Machine tools are dangerous!

Always keep that in mind, both when designing and setting up your system and when operating it on a daily bases.

CNC machine tools are heavy and strong machinery, moving sharp and hot cutting tools or extremely powerful plasma torches under computer control. Computers are complex systems and it is *impossible* to ensure 100% error free and safe operation in every situation. It is perfectly possible that a software design flaw, called bug, cause the system to operate unexpectedly or even run away wild.

Therefore it is very important to take appropriate precautions for such an eventuality.

Every system needs to have an Emergency switch fitted.

The emergency switch needs to be so wired that it will prevent any machine movement and stops spindle or shuts down the torch arc when activated.

The emergency switch needs to be mounted to a place that is easily accessible when operating the machine.

The emergency switch has to be of the latching kind in other words: once activated it must stay activated until manually de-activated.

Depending on the physical layout and power of your machine movements you need to consider if you should activate the emergency switch whenever you have your hands or limbs inside the working area of your machine.

With some machine configurations it may be preferable not to activate the emergency switch if you need to pause the system in the middle of machining, for example to change the tool bit because the axes might loose their positions and it maybe acceptable to just ensure that the spindle will not start on its own.

For that purpose a kill switch to the spindle motor controller maybe fitted that will prevent the spindle from running no matter what the control systems does.

Above does not by any means endorse any particular way of ensuring safety and no responsibility or liability is accepted by me. You need to do your own risk and safety assessment and act accordingly.

Chapter 2

Introduction to CNC-Machining

2.1 Overview of a CNC Machining System

This is probably familiar territory for you otherwise you would not be here in the first place but this section is short introduction to tell you where exactly EazyCNC and TOAD4 fits in the big picture.

Figure 2.1: a CNC Machining System Overview

The CNC machining process starts with a design of the part to be machined which is turned into a sequence of instructions to the computer that controls the motors, typically stepper motors, that move the cutting tool (or work piece) via series of gears, belts, pulleys and/or screws. These tool movements are typically called 'axes', for example X-axis, Y-axis etc.

The 'sequence of instructions' is called G-code and it is basically a text file with coordinate points that define the path the cutting tool will make.

G-code can be hand written but is typically generated automatically from a CAD (Computer Aided Design model) of the part using CAM (Computer Aided Manufacturing) software, either directly by the CAD/CAM program or by a program called post-processor.

The G-code file is read by a program that turns the coordinate information and other commands in the G-code file into motor control pulses in real-time observing programmed feed rates and machine parameters such as number of pulses required to move a unit distance.

This is where EazyCNC/TOAD4 comes into picture because EazyCNC is the program that does the G-code interpretation and TOAD4 is a micro controller that does the real-time motor control.

2.2 Understanding Real-Time

In common language real time means roughly 'as it happens' but in computer jargon real-time has a specific and important meaning.

Real-time here means that the pulses that control the distance and speed of movements need to be generated precisely at appropriate rate because the motors and mechanisms that move the axis have

physical limits beyond which they fail to move as required.

EazyCNC runs on a personal computer such as an IBM PC compatible or a Macintosh computer. These computers use an operating systems, such as Windows, Linux or Mac OS X, that are not ideally suited to real-time control. You can easily get a feel for this when you plug in a USB-device as often the mouse cursor stops for a second or two – imaging if the system paused like that when it should be turning a corner.

There are different ways out of this difficulty. A Windows program called Mach3 uses a special 'driver' software for the real-time stuff and another program called EMC2 uses a specially 'patched' version of the Linux operating system just to mention two.

EazyCNC takes a different approach.

EazyCNC delegates the most demanding real-time tasks to the TOAD4 micro controller which is better equipped and positioned to do the precise real-time generation of motor control pulses and such because it does not have to deal with the endless variety of the PC hardware and software and because it has been designed from ground up for the very task of performing real-time control.

EazyCNC reads and interprets the G-code and breaks it into bite size chunks that the simple micro controller in the TOAD4 can process in real-time.

These bite size chunks are transferred from the PC to TOAD4 over the USB bus and put into a command queue in the TOAD4 micro controller.

EazyCNC attempts to keep the queue full at all times so that if EazyCNC or the operating system it runs on needs to 'pause' for a second or so there is still data for TOAD4 to process and machining can continue without missing a beat.

This is important because when stepper motors are run at high speed a delayed pulse is equivalent to a sudden deceleration which may cause the system to exceed the stepper motor's max torque in which case the stepper motor will not be able to 'hold' its position and accuracy is compromised.

2.3 Understanding Stepper Motors

While EazyCNC and TOAD4 can be used with Servo Motors they really are meant to be used with Stepper Motors.

Stepper Motor are motors with two or more stationary coils and a rotating permanent magnet rotor. By energizing the coils in sequence the rotor can be made to move.

Stepper Motors have some interesting and important properties.

First of all they do not 'run' if you just energize them, at most they make a single small movement called step. This makes them rather safe as a short circuited transistor in the drive system cannot make the motor run wildly.

Secondly when you apply a controlled energizing sequence into the coils the motor makes precise fractional rotational movements called steps, a typical stepper motor step is 1.8° or 200 steps/revolution.

It is this second property that makes steppers very attractive for controlling precise movements.

If you 'step' a stepper motor ten times you can be pretty sure that it actually moved ten steps. So there is no need to measure position of the motor in any other way than counting the pulses we send to it, no need for expensive encoders and or position scales.

This makes stepper motors very cost effective way to implement motion control.

But the lack of position feedback is also the downside of stepper motors.

The positional control of a stepper motor based system relies on an initial position and keeping track of the steps and their direction.

The initial position can be either given manually or found automatically by using a reference switch.

Manually means that you move the motor/axis to a known position, such as to the end of the movement range, and tell the system that this is it.

If a reference switch is available then the system can move the axis/motor through its range of movements and make a note of the step number on which the reference switch is reached and in this way calibrate its position.

Keeping track of the pulse and their direction is done automatically and precisely by the software but under certain circumstances the motor cannot 'carry out the step' and the system loses track of the real physical position, this is called missing steps.

Missing steps can happen if the stepper is stepped too fast or the load exceeds what the motor can deliver. To prevent that the correct maximum speed and acceleration parameters need to be programmed into the system.

Also note that manually forcing the axes to move, if you manage to overpower the motors, will cause the system to lose its position, so all manual movements must be done via the 'jog' controls of the system.

It must also be mentioned that since we are controlling the motor position, not the cutter position, any backlash or play in the mechanism is *not* automatically compensated for.

Typically not of practical concern but good to know is the fact that stepper motors are not very 'stiff'. Even though the motor has specific torque it actually has very little torque when the magnetic poles of the coil and rotor are aligned i.e. at every full step.

You can think about this as if the rotor and stator poles were connected with springs; when the poles are aligned the spring will not pull the rotor one way or the other, they only exert force and torque when the rotor is moved into misalignment and thus there is almost always a small but measurable error between the physical and ideal step position.

There is of course a lot more to know and understand about Stepper Motors but above is the most important thing to keep in mind when working with systems based on them.

Chapter 3

Hardware and Software Requirements

This chapter gives you important information about the software and hardware requirements for a system based on EazyCNC and TOAD4.

3.1 Dedicated Computer

The computer used for CNC machining should be dedicated for the CNC system and not shared for other use.

A CNC machine should not be directly connected to Internet because of the possibility of viruses and malware causing havoc in an environment where they can cause actual physical damage and injury.

If the dedicated CNC PC is connected to a local network it is important that the network is secure and runs behind a firewall and that all network connectivity to the CNC PC is kept at minimum.

No other software besides the operating system and EazyCNC should be running on the CNC PC during machining. You should especially watch out for programs that start automatically behind the scenes when the computer boots up.

Utility programs to kill non required applications and processes exist.

All screen savers, auto log-off and power save features and modes should be turned off.

It would be prudent, if feasible, to stop/remove all operating system processes that are not vital to the CNC application.

Once the system has been set up, configured properly and tested it should be 'freezed' and any upgrades and changes

3.2 Hardware

It is impossible to give hard limits as to which kind of PC computer should be used with EazyCNC.

In a less demanding application at moderate feed rates you can get by with a less powerful computer.

It is tempting to utilise that old PC that is just lying there gathering dust, but that is not recommended.

Consider that you are building an automated machining tool and for that you want reliability and responsiveness. A suitable PC can be purchased for a few hundred euros/dollars and is well worth it considering what you are building and what you are going to do with it.

A fairly recent and decent PC with at least 2 GHz processor, good graphics card, a minimum of 4 GB RAM is recommended as the minimum. To install and run EazyCNC you need at least 400 MB of free disk space.

During machining all the G-code data as well as the tool path graphics is kept in memory so there is no such thing as too much memory, too fast graphics card or too fast CPU!

3.3 Raspberry Pi Notes

While Raspberry Pi is basically just another Personal Computer I think it deserves its own section.

3.3.1 Why Raspberry Pi

There are some good reasons to use Raspberry Pi as the brains of a CNC machine.

Raspberry Pi is cheap enough to dedicate one to just for the CNC task. A dedicated computer is much more stable as you are unlikely to install or try out new stuff on it and disturb a carefully setup and working system.

Raspberry Pi is small which makes it easy to enclose it to protect it from the harsh conditions in a workshop.

Raspberry Pi can be passively cooled so there does not need to be a fan to suck in all the dust and chips that fly around in a workshop.

Raspberry Pi supports number of different economical touchscreens which makes a keyboard superfluous in day to day CNC operation. A keyboard and a mouse in a machine workshop is a problem waiting to happen.

Basically what I'm advocating here is to turn Raspberry Pi into a kiosk mode dedicated CNC controller.

3.3.2 Get a larger touchscreen

Talking of touchscreen, EazyCNC has a special screen layout mode that makes it possible to use the official 7" 800x480 pixel touchscreen.

However I highly recommend a 1280 x 800 resolution screen of at least 10" physical size.

3.3.3 Virtual keyboard or not!

If you use a touch screen you probably do not have a physical keyboard attached to your Pi. But you certainly need to be able to type in some text at some point, at least during setup.

To do that you either need to install a virtual keyboard or attach a physical keyboard.

EazyCNC by itself does not need a virtual keyboard to be installed because it has a built in virtual keyboard tailored to the needs of a CNC machine operation.

In fact I would recommend against installing a virtual keyboard.

Instead my preference for a Raspberry Pi CNC setup is to use a wireless keyboard which can be stowed away when not needed out of the way of flying chips, coolant and dust. Just use the built in virtual keyboard with EazyCNC for day to day operation.

3.3.4 Start EazyCNC without a keyboard or a mouse

So that you can work without physical or mouse keyboard you need to be able to start EazyCNC without a mouse or keyboard.

To start EazyCNC automatically you will need to:

3.3.5 Shutdown Pi cleanly and safely

Likewise you need to be able to cleanly shutdown the computer without a mouse or keyboard. Just rudely 'pulling the plug' risks corrupting your disks.

To shutdown Raspberry when you exit EazyCNC you need to enable 'Shutdown on Quit' feature which you will find in Mach Setup / Options.

Then all you have to remember is to Quit EazyCNC when you are done machining and system will cleanly shut itself down.

3.3.6 Only use fresh Raspberries

EazyCNC may run in older Pis and different operating systems but the only supported configuration is Raspberry Pi 4 with at least 4 GB RAM and the 32 bit Raspberry Pi OS. Given the low price of that I suggest forgetting any old Raspeberry you may have lying around and getting a Pi 4.

3.3.7 SSH is handy

By default Raspberry Pi OS does not support SSH connections. This and the reasons for it are in my opinion dubious but that is the way it is. Yet a SSH connection may come handy if you do not have keyboard attached to the Pi. So you may want to consider enabling SSH, you can easily google instructions for that.

3.3.8 (Re)invent your identity

It is worth remembering that out-of-the-box Raspberry Pi OS comes with a default user and a default password, so the whole world knows them. The first thing I do on a new Raspberry is to change at least the password. I also usually also create a new user that matches my username in all the other computers I have, which comes handy connecting from them to the Pi.

3.3.9 Fast and furious

If you are impatient like me you would like your CNC machine turn on as fast as any other power tool in your shop. Well, that is not going to happen but if you are adventurous you can google and follow instructions that promise to cut down the half minute Pi boot time to sub 5 seconds.

This may also have the benefit of getting rid of all the extra fat that consume CPU cycles and thus may improve the system stability and performance.

3.3.10 Sharing folders via Samba

One more thing, as Steve used to say.

While it is advisable to NOT connect a CNC machine to any network and thus following should be moot, you probably will anyway because transferring your G-code files by running an SMB server on your Pi and sharing a volume with your Mac is just too tempting.

You probably want to use the Pi WLAN for that.

But keep in mind that if you enclose the Pi in a metal case the built in WLAN (or anya wireless USB dongle) will not work inside a Faraday cage in which case (no pun intended) you need an external adapter or need to use the Ethernet.

3.4 Operating System

The following operating systems/version have been tested, so you may consider that they are 'supported' operating systems.

- Mac OS X 11.31.1 (Big Sur)
- Windows 10
- Linux Ubuntu 20.04.1 LTS (64b)
- Raspberry Pi OS May 7th 2021, (32bit)
-

EazyCNC is built on Java which is fairly operating system independent so it is likely it will run with a wide range of version of above mentioned operating systems but of course it is not possible to guarantee that.

Note that EazyCNC comes with Java Runtime Environment included. This means that when you run EazyCNC we both know that you are running a version of JRE that has been tested and that you don't need to install Java separately.

But it also means that you may not run a specific EazyCNC executable in a different OS than what it is intended to. This is especially significant in regards to the 32 an 64 bitness of your OS.

In theory you can 'hack' the EazyCNC to run with any JRE you want but this is not supported.

Also worth noting is that operating system version tend to become obsolete and unsupported in a matter of some years and while I try to maintain compatibility with older OS versions it may become impossible at anytime.

3.5 Anti-Virus Software

An anti-virus software is not recommended on the PC running EazyCNC as such software is very intrusive and can cause real-time violations and machining failures. Further, it is not very necessary because a CNC PC should not be connected to Internet.

It is of course important that anti-virus software or some other means are used to ensure clean operation of the computer producing or transferring the G-code file as a virus might infect the media, such as a USB memory stick, used to transfer the G-code to the CNC system.

Chapter 4

Installation

Lest we forget: always, always, backup your installation!

You will put in a lot of effort into installing, configuring and tuning your CNC system before you are happy with it. You don't want to redo all that when (not if) the hard drive crashes or becomes corrupted.

Backup! Backup often!

4.1 Getting the Application

Note that you do not need to have actual hardware or any drivers installed to run and play with the software.

EazyCNC is distributed via Internet so just download the file appropriate for your operating system from the EazyCNC website at:

<http://www.eazycnc.com/downloads/downloads.php>

Depending on your operating system EazyCNC is distributed as a compressed file which you may have to un-compress with the tools in your operating system.

4.2 Installing the Application

On macOS EazyCNC comes as a single executable file which does not require an installer. Just copy the file to where ever you want in your computers hard disk.

To launch it, just double click the icon.

If you prefer you can create a shortcut aka alias for the application and put it on the Start Menu or Desktop or drag the icon into the Dock.

On Windows EazyCNC comes with an installer that you need to run, look for the EazyCNC Setup file in the distributed folder. The installer should set up a desktop icon for EazyCNC as well as a Start-menu item.

On Linux EazyCNC comes as a .tar.gz file. You need to extract the contents to some directory and look for 'bin/EazyCNC' inside that directory to launch the application.

Note that it may take some time after launching EazyCNC before you see the EazyCNC main screen, especially on the first launch. If you are impatient and launch the program twice you will get two programs running at the same time, which is fine but probably not what you want.

In Linux you may have to give the application execute permissions first. You can do that by right clicking at the application file and selecting 'Properties' and in the Dialog that appears you should be able to set the file as executable.

On some Linux distros you may have to give the access rights via the command line with something like:

```
chmod a+x <EazyCNC executable filename>
```

Chapter 5

Overview of EazyCNC

The main purpose of EazyCNC is to read machining instructions in the form of a G-code file and control accordingly the motors that move the machine tool. In addition to that it provides the necessary controls to manually move the machine axes.

5.1 Moving Around in the Program

Figure 5.1 shows the 'main screen' of the application. Note that if your screen resolution is small then the titles of the boxes aka panels are not displayed to conserve some screen real estate.

The screen is logically divided into two parts, upper and lower half. The lower half is always the same, but the upper half changes depending on which screen or view you are.

On the upper left corner, Figure 5.2 are buttons that control what is shown on the upper half. When this manual says 'go to screen' or 'in screen' it refers to these view control buttons and the different screens they bring up.

The lower half of the screen always shows the controls that are used to cause the machine to actually move.

For a typical usage the main screen, 'G-code', provides all the controls that are necessary to open a G-code file and machine the part it represents.

The other screens are for setting up coordinate systems, tool parameters and to configure various aspects of the machining system.

On the main screen the upper right quarter of the screen the current G-code file is shown with the line G-code line being executed highlighted in blue.

On the upper left quarter a 3D view of the tool path is shown with the path already executed shown in green and the path that remains to be machined shown in red.

Below those, from left to right, there are the coordinate read outs (DROs) displaying the tool position, jog controls to manually move the tool, user programmable function keys for repeated tasks and manual spindle controls and feed override controls.

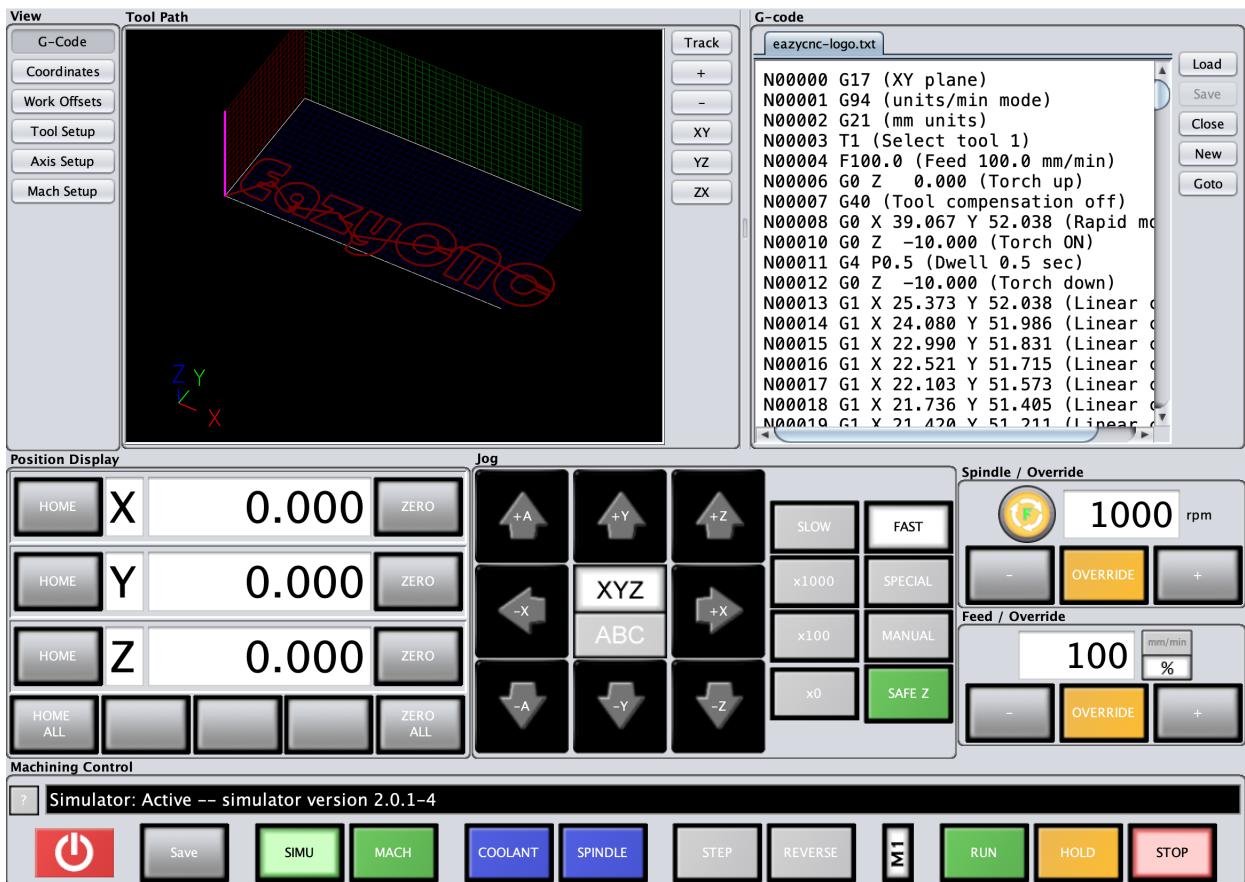


Figure 5.1: EazyCNC Main Screen – the G-code view

At the bottom row there are buttons to control the actual machining and running of the G-code program, either in simulation mode or actually cutting some metal. With these controls it is also possible to temporarily pause the execution and run the G-code step by step and even backwards.

Usage and cutting metal with EazyCNC is described in detail in Chapter 7.

Setting up of EazyCNC is described in the following chapter.

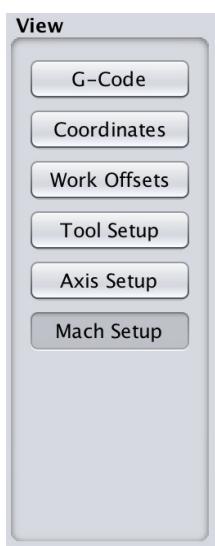


Figure 5.2: The view selection buttons

Chapter 6

Setting Up and Configuring

EazyCNC should work out of the box without any setup or configuration, so you can play around and test it right away.

However before you can actually use it with TOAD4 and machine something there are a few things you need to set up and configure.

This chapter proceeds in the preferred order of setting things up, however I suggest you read it all through once before setting up the system.

The two most important things to set up are communication between your computer and your TOAD4 and configure each axis to match the motor characteristics and axis gearing.

6.1 Saving Your Setup

EazyCNC stores all setup and configuration information as well as the current machine state in file named 'EazyCNC-Mach-Config.ecnc' in a directory named 'EazyCNC' in your 'home' directory. This directory is called EazyCNC-home directory in this manual.

Backup your settings!

Anytime you make changes to your setting you should consider backing up the configuration file. Especially before installing a new version of EazyCNC.

Your 'home' directory location depends on your operating system as follows:

where *username* is the name you use when you log into your computer.

EazyCNC does not ever automatically save the settings, this is to protect you from accidentally altering your carefully crafted machine setup and configuration. To save your settings or any changes you've made you need to click the 'SAVE' button.

If the file or folder does not exist EazyCNC will create them with reasonable default settings when

you click the 'SAVE' button.

You do not have to 'worry' about this file but it is good to know about it and where you can find it as you want to make backup copies of it or may want to maintain several different ones for different system configurations.

The file is in a plain (JSON) text format so it is ok to view and even edit it manually, though that is not recommended unless you know what you are doing.

Many programs like Mac OS X Textedit may mess things up by adding formatting and changing the file name extension with .txt or .rtf, so learn to avoid those if you venture there.

6.2 Setting up USB permission in Linux

If you are not running EazyCNC under Linux you can skip this section.

Most Linux distros take a very serious view of security. This means that by default you are not even allowed to use your own devices! To complicate matters there is no easy way to give yourself the necessary permissions.

EazyCNC tries to make this easier for you by detecting the situation and offering to help.

If EazyCNC detects 'ACCESS DENIED' error (aka error 13) in Linux a dialog appears and asks if you want help. If you accept the help then EazyCNC will write a setup script to the EazyCNC-home directory and open a Terminal window into that directory.

In that directory you will need to type in and execute the following command:

```
sudo ./setup-udev-rules
```

The reason why EazyCNC does not do all the heavy lifting for you is the need for 'root' access rights. So you have to do the 'sudo' part yourself, as per above.

The setup script will write rules to the udev rules directory that will grant you access to all the devices that EazyCNC may be used with, including TOAD and the supported MPG pendants.

Once the rules are setup you will need to un-plug and re-plug all the relevant USB devices for the rules to be applied.

Now you are ready to go!

Note that above I wrote 'EazyCNC tries' to make things easier. This implies that it may not succeed. This is because it is virtually impossible to write code that works in everyone of the more than 600 Linux distros with their dozens of desktop environments.

So if above fails you will need to do everything manually for every device that you need to work with in EazyCNC, starting with TOAD.

What follows is a brief description how to go about it for TOAD. If above procedure works for you, skip the rest of this section.

To allow EazyCNC to talk to the TOAD4 you need to create a file named:

99-TOAD4.rules

and put it in the directory

/etc/udev/rules.d

In the file '99-TOAD4.rules' you need to put the following line (all on one line):

```
SUBSYSTEMS=="usb", ATTRS{idProduct}=="000a", ATTRS{idVendor}=="0408", MODE="0666", GROUP="plu
```

Basically you can do that with any text editor. Unfortunately you do not have the permission to write it to the directory '/etc/udev/rules.d'. So I recommend creating the file in your home directory and then use the Terminal and type in the following command to copy the file over:

```
sudo cp ~/99-TOAD4.rules /etc/udev/rules.d
```

This command will ask for your password to allow you temporarily write to that directory.

Alternatively following one-liner should accomplish setting up the rules for you:

```
sudo echo 'SUBSYSTEMS=="usb", ATTRS{idProduct}=="000a", ATTRS{idVendor}=="0408", MODE="0666",
```

Note that above absolutely must be on one line, so if you copy paste it from here, make a practice paste to a text file to see that you got it all on one line.

6.3 Updating Motor Controller Firmware

If you are using TOAD4+ (2.n.m) firmware NEVER update the firmware using a ICSP programmer or PICKit!

You can update the firmware in The Motor Controller Type selection screen, figure ??.

To update the firmware do as follows.

Connect your TOAD4+ hardware to a USB port and power up the controller.

For safety it is better if none of the machinery that the controller is controlling are powered up at the same time!

Ensure that EazyCNC is NOT in MACH mode.

Select which firmware version you want to upload from the Firmware -popup.

Click the UPDATE -button.

At this point a dialog box will appear that shows the progress of the firmware update.

Do not touch anything in the computer or hardware during the update.

If the firmware update is interrupted you may have to force the TOAD4+ board into the firmware update mode by removing the jumper between pins 4 and 5 of J6.

6.3.1 Firmware -popup menu

EazyCNC comes with all the firmwares that have been release at the time of te EazyCNC release and those firmwares are listed in this popup menu.

If the firmware you want to upload is not listed you can either update your EazyCNC, which should never be taken lightly and without good judgement, or you can obtain the firmware file (.hex) separately.

If you want to use a separate firmware file select the the 'From file...' option from the popup menu.

UPDATE -button

When you click this button the firmware will be updated.

If you selected 'From file...' in the 'Firmware' -popup then a file dialog will be present at this point and you need to select the correct firmware file.

During the update a dialog box detailing the update progress is shown. This dialog box will disappear after the update is complete. A success/fail message will be show briefly in the Status Display, if you miss that you can always press and hold down the little button marked '?' next to it.

If update was succesful the firmware version should show up in the Status Display when you click the MACH button.

6.3.2 Testing the Motor Controller Connection

To test that the motor controller is connected power it up and click the MACH button in the EazyCNC user interface.

If everything is as working properly you should see a message next to the button marked with '?' that says something like:

```
Controller: Connected -- firmware version x.y.z-q
```

6.4 Enabling Debug Logs

EazyCNC can collect diagnostic information into log files stored inside your EazyCNC directory to help in trouble shooting.

By default the collection of that information is not enabled as it can slow things down which in itself can cause problems.

Your EazyCNC directory location depends on your operating system as follows:

where *username* is the name you use when you log into your computer.

Log files are periodically deleted from the file system if they are older than seven days.

6.4.1 Enable Java Console to file logging -checkbox

EazyCNC outputs diagnostic information to a window name Java Console. You can bring up (or hide) the Java Console by pressing the F12 key.

If this checkbox is ticked then anything that is output to the Java Console is also written to a text file in the directory named 'java-console' inside your EazyCNC directory.

These are all text files and you can open them with a text editor should you wish to have a peek.

You can view or hide the Java Console by pressing F12 key.

6.4.2 Enable TOAD4 communication logging -checkbox

If this checkbox is ticked then all communication is between EazyCNC and TOAD4+ is written to a binary file in the directory named 'debuglogs' inside your EazyCNC directory.

These are binary files and you need some special knowledge to be able to view them.

6.5 Setting up the User Interface

This seems to be as good place as any to mention a few important details.

If you have no configuration file, as is the case if this is your very first time with EazyCNC then the On Screen Keyboard (aka virtual keyboard is enabled). This means that the keyboard comes up on the screen as soon as you click on any entry field. If you do not like this you can go to ADDREF and disable it.

The reason that it defaults to 'enabled' is that if you only have a touch screen you would not be able to enable it in the first place without a mouse but with mouse and keyboard you can always set it to your preference.

Also, if you have no configuration file and the height of your screen is less than 700 pixels high then the Screen Layout defaults to Minimal. Again this is because if your screen is too small you could not change the layout and save the settings. But if your screen is large enough you can always set the layout mode to your preference.

Now that the communication works and before we set up the motors and axis we want to select the length units you are comfortable with.

To do that go the the 'User Interface' setup screen Figure 6.1

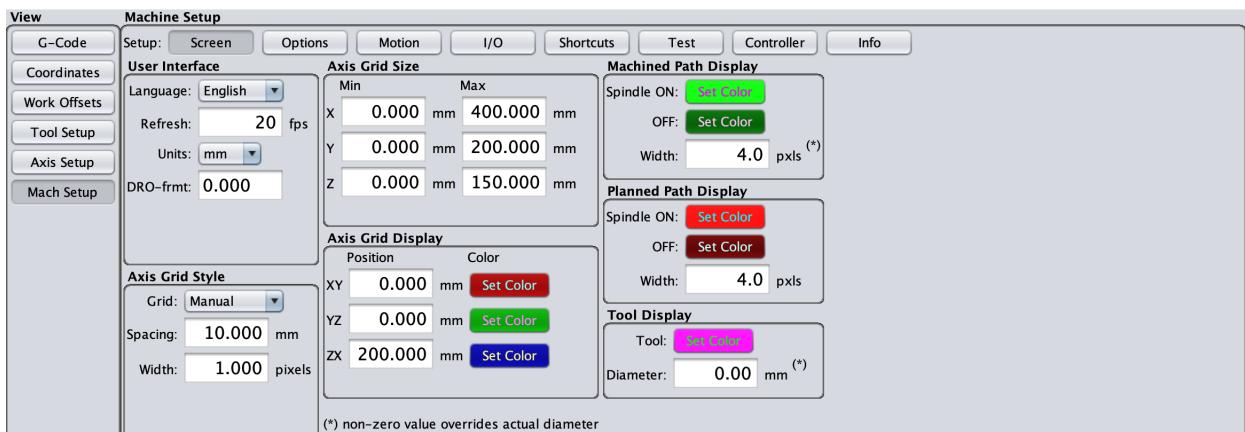


Figure 6.1: The User Interface setup screen

EazyCNC supports working in millimeters or inches. All displays and entry fields will always show values in the selected units and accept values in these units. You can change the units at any time and it will not confuse EazyCNC, so you can use millimeters to set up things and then switch to inches; however even if EazyCNC will not get confused, you may, so it is best to select one system of units and stick with it.

Note that regardless of the units selected here the G-code file can contain coordinates that are expressed in millimeters (G21 mode) or inches (G20 mode), and this is perfectly fine, as long as the correct G20/G21 mode is specified in the G-code file.

6.5.1 Units -popup menu

There are two options.

'mm' – with this setting all the entry fields and DROs displays are in millimeters.

'inch' – with this setting all the entry fields and DROs are in inches.

6.5.2 DRO-format -entry field

With this entry field you can control how numbers in the entry fields and DROs are displayed.

The main usage is to control the number of decimals you want displayed, to do that just enter '0.' followed by as many '0' characters as you want decimals.

For example with inches it is probably preferable to use three decimals to see the 'thous' so enter '0.000' in this field, for working with millimeters '0.00' is probably best.

6.5.3 Update rate -entry field

This entry field controls how many times per second (frames per second, fps) the toolpath display is updated. Smaller values than 10 may produce jerky updates and higher values than 30 are unnecessary and may bog down the computer.

6.5.4 Language -popup menu

This popup allows you to select the language used in the user interface.

6.5.5 Machined Path -settings

The settings in this panel control how the tool path for the already cut path is displayed in the Toolpath display panel in the main screen.

A different color can be specified depending on whether the spindle was on or off when the path was cut.

The width of the path in the Toolpath display panel, in *pixels*, can be specified in the 'Width:' -entry field. If this is set to zero then the actual tool width from the tool table for the tool selected by the G-code program is used in displaying the path.

6.5.6 Planned Path -settings

The settings in this panel control how the tool path for the planned i.e. yet to be cut path is displayed in the toolpath display panel in the main screen.

A different color can be specified depending on whether the spindle will be on or off when the path will be cut.

The width of the path in the Toolpath display panel, in *pixels*, can be specified in the 'Width:' -entry field.

6.5.7 Tool Display -settings

The color of the tool in the Toolpath display can be specified as well as the size of it by entering the desired tool width , in *mm or inch*, into the 'Width:' -entry field.

If the tool width is set to zero then the actual tool width from the tool table for the tool selected by the G-code program is used in displayin the path.

6.5.8 Axis Display -settings

The size and colors used to display the axis grids in the Toolpath display can be specified here.

The main purpose of the grids is to allow you check your toolpath against the current working coordinates to ensure that the toolpath and coordinates are set up as you want.

6.5.9 Spacing -entry field

This entry field determines the grid line spacing.

6.5.10 Width -entry field

This entry field is used to set the line width of the grid lines.

6.5.11 Grid -popup menu

The size of the grid can be set manually or automatically. In the automatic mode the grid size is determined by the toolpath and is automatically calculated to just encompass the complete toolpath.

6.5.12 Min/Max -entry fields

These entry fields control from which coordinate (min) to which coordinate (max) the grid extends for each axis.

6.5.13 Posision -entry fields

These entry fields control at which position each plane crosses third coordinate axis.

6.5.14 Color -button

These buttons are used to set color for each grid.

6.6 Options

This screen contains number of unrelated options or user preferences.

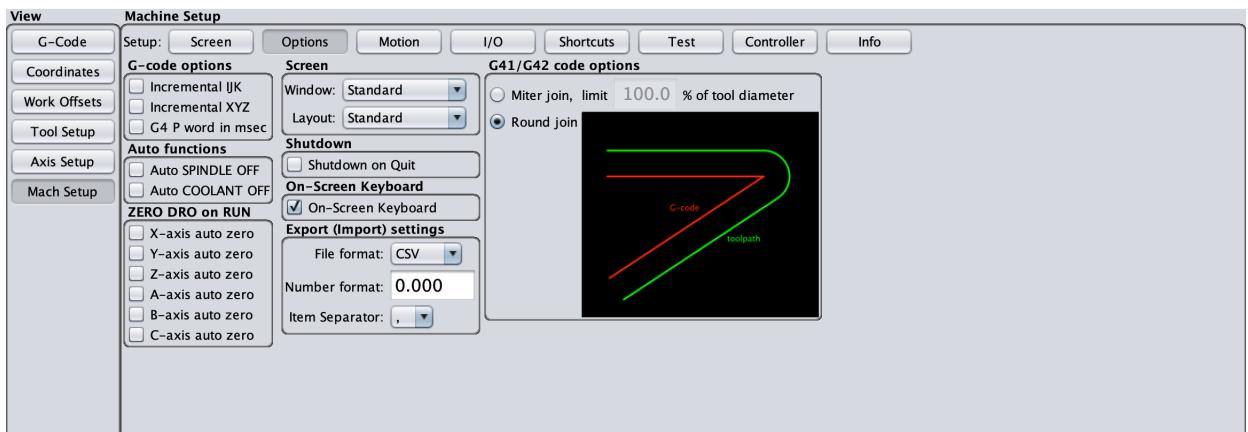


Figure 6.2: The Options setup screen

Figure 6.2

6.6.1 G-Code Options

G-code dates back to 1960s with the final revision RS274D approved in 1980. Over the years manufacturers of CNC system have added extension and variations to the standard.

EazyCNC tries to accommodate a common subset of the most popular systems out there by allowing you to fine tune some details of the G-code interpretation to match your G-code program.

For a complete description of G-codes supported by EazyCNC see Chapter 9.

6.6.2 Incremental IJK -checkbox

If this check box is ticked then the I,J and K words in the arc cutting G2 and G3 commands are interpreted relative to the start point of the arc.

If you see a lot of large erroneous arcs in te tool path graphics panel when your are previewing your G-codes then you can be pretty confident that this tick box is in the wrong state.

6.6.3 Incremental XYZ -checkbox

If this check box is ticked then the X,Y and Z words in the movement commands G0,G1,G2 and G3 are interpreted relative to the previous X,Y or Z words/positions.

6.6.4 G4 P in msec -checkbox

If this check box is ticked then the P-word value in the G4 dwell command is interpreted in milliseconds instead of seconds.

If the execution of G-codes seems to stop at G4 commands you can be pretty sure that this check box is not ticked but should be.

6.6.5 Auto Functions

Some actions are so important to perform and perform quickly that they deserve automation. This section lists is for that functionality.

6.6.6 Auto SPINDLE OFF -checkbox

If this checkbox is checked then spindle is automatically turned off as soon as the machine exits the RUN state. This is important in a plasma cutting application because the torch will continue to burn metal even if you stop the movement.

6.6.7 Auto COOLANT OFF -checkbox

If this checkbox is checked then the coolant is automatically turned off when the machine exits RUN state. This is very convenient as the only reason to pause/stop is to either inspect the work or change a tool, in either case you don't want coolant flowing.

6.6.8 ZERO DRO on RUN

Especially in plasma cutting application but also in milling it is all too easy to zero the DRO before you start cutting. With these options you can select the axis you want to automatically ZERO when you press RUN.

If the automatic zeroing is enable for any axis then pressing RUN will not start machining, instead it will zero the specified axis and give a warning message of this action. You need to press the RUN second time to actually start machining.

6.6.9 N-Axis auto zero -check boxes

If any of these checkboxes is checked then the corresponding axis is automatically zeroed when you press the RUN button.

6.6.10 Screen

With these options you can control how the screen is laid out to best suit your physical monitor screen.

Note that you need to both Save the configuration and re-start the program. If you are running in a small screen the Save-button may not be visible, in that case use the Alt-Cmd-S for Mac OS X or Alt-Ctrl-S for Windows/Linux to save the the configuration before re-starting EazyCNC.

(Depending on which desktop environment you are running on Linux, keyboard shortcuts may not work!)

6.6.11 Window

There are three modes the EazyCNC window can be, Normal, Undecorated and Full screen. Normally a window has a title bar that you can grab and drag to move the window around and some handle from which the window can be resized.

But those the title bar and other 'decorations' take up screen space so you can select the Undecorated mode. If you select that then you cannot move or resize the window.

To avoid the distraction of the other applications behind the EazyCNC window you can select Full Screen mode. This mode will also hide the OS task bar and prevent you from accidentally activating some other application. This 'kiosk' mode is especially handy if you dedicate your computer for just the CNC controller role.

6.6.12 Layout

There are three screen layout modes: Normal, Compact and Minimal.

Normal mode is intended for larger screens and in that mode all the explanatory titles and hints that help you to remember and understand what is what are visible.

In the compact mode many of the hints and titles are not visible or are minute and difficult to read. This is to accommodate usage on small screens.

For very small screens (think Official Raspberry Pi 7" screen) there simply is not enough space on the screen to display the whole EazyCNC user interface all at once. If you select the Minimal layout then only the upper or lower part of the user interface is visible on the screen at any given time.

To toggle between the upper and lower screen a new small button will appear in the lower left corner of the screen, see

Figure 6.3: The screen toggle button

Figure 6.3 .

6.6.13 Shutdown on Quit -checkbox

If this checkbox is checked the just before EazyCNC is quit it tries to execute 'shutdown' command in the operating system shell. This is useful when operating without a mouse or keyboard because this allows clean shutdown of the computer. An abrupt non clean shutdown by pulling the power plug may corrupt the disk and render the system un-bootable.

Whether or not the shutdown actually succeeds really depends on the operating system and how it is configured. On Raspberry Pi OS it should work, which is the intended application for this feature.

6.6.14 On-Screen Keyboard -checkbox

If this checkbox is checked then clicking at any entry field will bring up the on screen (aka virtual) keyboard, see [Figure 6.4](#).

Figure 6.4: The on-screen virtual keyboard

The on-screen keyboard works in parallel with real physical keyboard so you can use both at the same time.

6.6.15 Export/Import screen

The Tool Setup screen allows you to save and load the tool setup to/from a text file in what is called CSV (Comma Separated Values) format, see [section 7.18](#)

In the Options Export Import section you can setup details of the text file format.

6.6.16 File format -popup menu

With this popup you select the format in which tool setup is stored in the text file. Currently only CSV (Comma Separated Values) format is supported.

6.6.17 Number format -entry field

Into this entry field you enter a 'sample' of how the numbers should be formatted. For example if you want to have three decimals use '0.000' .

6.6.18 List item Separator -popup menu

Unfortunately CSV format does not specify whether the decimal separator is '.' (period) or ',' (comma). Worse than that, you probably want to edit the text files in Excel which defaults to different separator depending on which language version of the OS you have.

As mentioned the ',' (comma) can be both decimal separator and list item separator, but it should never be used for both purposes at the same time.

So in this popup you can select which (comma ',' or semicolon ';') character is used as the list item separator, this changes the list decimal separator. If list separator is ',' then decimal separator is ',' and if list separator is ';' then decimal separator is ','.

6.6.19 G41/G42 code options

When tool compensation is turned on with either G41 or G42 G-codes the question arises how the tool should move in external corners.

Traditionally the tool moves arounds the corner in an arc.

The other option is for the tool to move in a straigh line until it has 'cleared' the corner and the move in a straight line along the next segment. If the (external) corner is very tight then this would cause the tool to move very long away beyond the corner point, there for a maximum length can be specified.

This later option maybe useful in plasma cutting as it takes the cutting flame further away from the potentially sharp and narrow corner which tends to burn if the torch linger around the corner too long.

6.6.20 Use round join -radiobutton

If this is selected then the traditional way of handling external corners is used, i.e. the tool moves in an arc around the corner.

6.6.21 Use miter join -radiobutton

If this is selected then tool will move in a straigh line until it has 'cleared' the corner and then it moves in a straight line along the next segment. If, as a result of the corner geometry, the tool would move further from the corner than what is specified in the 'bevel limi' -entry field, then the corner is truncated as indicated.

6.7 Setting up Inputs and Outputs

The TOAD4/ board has outputs to control a Variable Frequency Drive (VFD) for machine spindle control, an output to control a coolant pump/valve and an input for touch probe.

To setup your probe input and VFD speed output go to the I/O setup screen, see [Figure 6.5](#).

Figure 6.5: The Input/Output setup screen

6.7.1 Probe Input -panel

Polarity -popup menu

This popup allows you to set which probe input state (1 or 0) is interpreted as active. Active means that EazyCNC interprets that the touch probe is touching something.

To test that your probe is functional and correctly configured, first ensure that you are in the MACH mode. Then just connect the probe to the PROBE INPUT and trip the probe. The PROBE 'LED' on the screen should lit green when the probe is tripped, if it doesn't the just change the polarity.

Naturally if the PROBE 'LED' does not change state when you trip the probe then you either have a hardware problem or you are not in the MACH mode.

6.7.2 Spindle Speed -panel

Whenever the spindle has been turned ON with M3 or M4 -code (Or with the SPINDLE button) TOAD4 will output a voltage from the 'SPINDLE SPEED' output proportional to the S-word value.

The output voltage is relative to the voltage fed into the '+10 VREF IN' input to the TOAD4 board, the intention is to grab that voltage from the VFD from which it is typically readily available for just this purpose.

The output voltage is calculated as

$$U_{out} = \frac{Sword - MinSpeed}{MaxSpeed - MinSpeed} * Uref \quad (6.1)$$

where

Sword = The S-word value from the G-code program

Uout = 'SPINDLE SPEED' output voltage in TOAD4

Uref = '+10 VREF IN' input voltage in TOAD4

MinSpeed = Value entered into the 'Min Speed' entry field

MaxSpeed = Value entered into the 'Max Speed' entry field

if above should result in a value outside the range 0..100% of *Uref* then it is clamped to that range.

Typically a VFD has parameters that are used to set the minimum and maximum spindle speed and it is precisely those same speed values that you should enter into EazyCNC here.

6.7.3 Min Speed -entry field

Enter into this field the rpm value which corresponds to the 0 Volt voltage at SPINDLE SPEED output and VFD speed input.

6.7.4 Max Speed -entry field

Enter into this field the rpm value which corresponds to the 10 Volt (100%) voltage at SPINDLE SPEED output and VFD speed input.

6.8 Configuring Motors and Axes

To configure the motors and axes go to the 'Axis Setup' screen, see [Figure 6.6](#)

On the top of the 'Axis Setup' panel you see six or four [TOAD4] buttons. By clicking at those buttons you control which axis parameters are shown on the panel.

There are three group of parameters for each motor and axis plus a panel for testing your motor and mechanics.

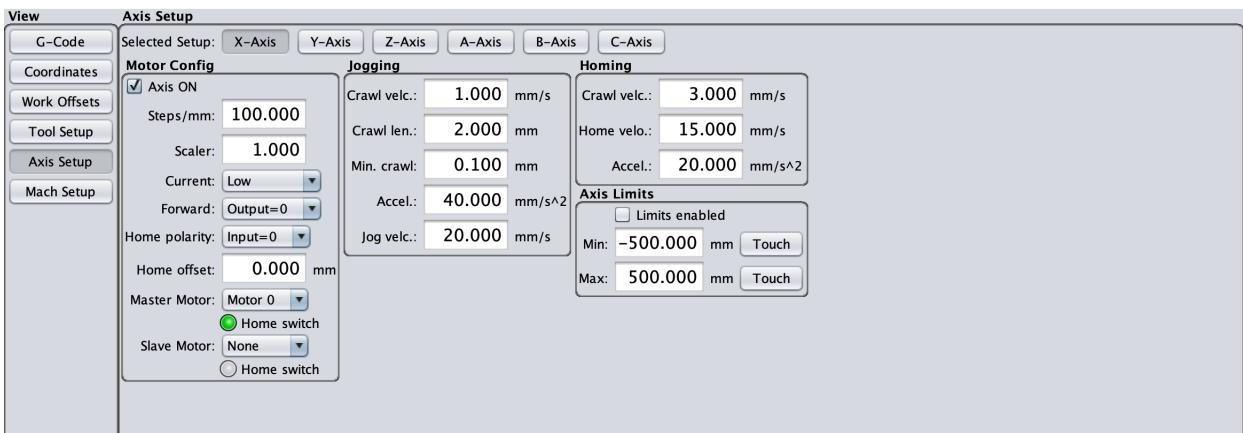


Figure 6.6: Axis Setup screen

Also here you can configure the axis DRO to automatically zero when you start a machining run.

6.8.1 Motor Config -panel

There are five parameters for each motor.

Axis On -checkbox

Axis On -parameter controls whether the G-code commands control that axis/motor or not. If the motor is not controlled by the G-code (Axis On checkbox is not 'ticked') then that motor/axis is available for manual jogging during machining or it can be controlled with EazyCNC plugin extensions.

Typically you want to use G-code to control the motors so make sure the Axis On checkbox is ticked, but if an axis is not used (say you only have a three axis set up) then un-tick the box so that you do not need to set up the motor properly.

Current -popup menu

TOAD4 supports two different drive currents for each motor, named High and Low, in addition to which the current can be totally off. The actual motor current depends on the current measurement resistors mounted to the TOAD4 board and the jumper settings on the TOAD4 board, see TOAD4 Hardware Manual for details.

The Current -popup menu controls how the three different currents are used when driving the motors.

There are four different options.

Low – with this setting the motor current is always set to Low. You might want to use this if the High current is too much for your motor.

High – with this setting the motor current is always set to High. This provides the most 'stiff' setup

but means that motors will have full current applied and 'run' hot.

Auto Off – with this setting when the motor/axis is moving or the G-code program is being executed the current will be set to High, but once the movement or machining stops the motor current will be turned off completely within two seconds.

Depending on the mechanics and usage this may not be ideal as the motors may move under external forces if there is no current and thus the axis may lose its accurate position.

Auto Hold – with this setting when the motor/axis is moving or a G-code program is being executed the current will be set to High, but once the movement or machining stops the motor current will be set to Low within two seconds.

This is often the most desirable motor current setting as full current and force is used during machining but the current and heat is reduced when the motors are not being used.

Forward -popup menu

The Forward popup menu controls weather the direction output on the TOAD4 board is 1 or 0 when the motor is driven forward.

Forward means that the coordinates of the axis are increasing.

There are two options.

Output = 0 – with this setting the (internal to TOAD4 board) DIR signal is set to logic zero to when the axis/motor is driven forward.

Output = 1 – with this setting the (internal to TOAD4 board) DIR signal is set to one zero to when the axis/motor is driven forward.

You need not to care about zeros or ones, just make sure this setting is right! When you press the axis jog buttons (+X,+Y,+Z or +4) the motor should be running in the direction that you have designated as the increasing coordinate for that axis.

If the motor runs in the wrong direction just change the setting in this popup.

Home -popup menu

TOAD4 supports one home/reference position switch input for each axis.

The Home popup menu controls weather the REF input on the TOAD4 board is 1 or 0 when home-/reference is switch is active.

There are three different options.

None – with this option the REF input is ignored and when you press the HOME button no movement happens, only the DRO for that axis is reset.

Input = 0 – with this setting EazyCNC expects that the REF input is a logical zero (closed) when the reference switch is active.

Input = 1 – with this setting EazyCNC expects that the REF input is a logical one (open) when the reference switch is active.

Again you should not care if the signal is active or non-active, zero or one, just make sure it works for you. If, when you press the 'HOME' button, the axis does not begin to move towards the reference switch the setting of this input is wrong. Note that you should first ensure that DIR signal is correctly configured, see previous section.

When you press the 'HOME' button for an axis EazyCNC will drive that axis until it finds the home/reference position at which point that axis DRO is automatically reset.

The way this works when you press the 'HOME' button is that if the the REF input is active the axis is driven to the positive axis direction until the signal becomes non-active. If the the signal is non-active to begin with then the axis is driven in the negative direction until the REF signal becomes active and then to the positive direction until it becomes non-active again.

This ensures that even though there is some backlash in the mechanism or hysteresis in the switch the mechanism position will always be correct.

You do not need to use a reference switch but by having one for each axis allows the system to know its absolute physical position which in turn makes it possible for EazyCNC to guard the movements against the physical limits of your system preventing crashes.

Using reference switches it is also possible to continue machining after a sudden loss of power because the absolute axis positions can be re-covered by homing the axes.

Note that the home or reference switch is no substitute for limit switches that should be installed at each end of the movements and wired to act on the emergency stop system.

The optimal placement for a reference switch is around the middle of the axis travel, but this requires that the switch is so configured that the REF signal is always on or off depending on which side of the switch the 'axis' is; it should not be possible to drive the axis 'beyond' the switch.

Home polarity -popup menu

TOAD4 supports one home/reference position switch input for each axis.

The Home popup menu controls weather the REF input on the TOAD4 board is 1 or 0 when home-/reference is switch is active.

Note that if you are using two motors to control a single axis, ie have the 'Slave Motor' defined for an axis then this polarity setup applies to both.

Home offset -entry field

This entry field controls to which absolute machine coordinates the axis will be re-set when you press the HOME button.

The absolute machine coordinates are more or less irrelevant except for specifying the axis movement limits.

Limits of course only make sense and should only be used if/when an axis is equipped with a Home/Ref switch.

Typically you set the limits so that the Min limit is zero and the Max limit is the total allowable movement for that axis.

For example, say your total X-axis movement is 500 mm. So you set Min=0, Max=500 in the Axis Limits panel. Further suppose your limit switch is set to activate in the exact middle of that range so you set the Home Offset=250.

Steps/unit -entry

This entry field tells EazyCNC how many steps it takes to move the axis a unit (mm or inch or degrees) amount. We call this value the step ratio.

Note that this is not an integral value and it should be entered with as many significant digits as required to achieve the desired accuracy. As rule of thumb use at least six significant digits in calculations and entry to achieve 0.01 mm accuracy over 1000 mm axis movement range. Note that you can enter more digits than what the entry field will display.

To calculate this value you need to know following:

- *mode*, a factor dependent on TOAD4 step mode
- *steps*, the number of steps per revolution for the motor
- *pitch*, the axis movement per motor revolution (including possible gearing)

Then you calculate the step ratio as follows:

$$step_ratio = \frac{mode * steps}{pitch} \quad (6.2)$$

The step mode depends on the M1 and M2 jumpers for each motor on the TOAD4 board.

See Table 6.1 for the jumper labels for each motor and Table 6.2 for the jumpers that need to be installed to get the desired step mode and the mode value to use in Equation (6.2)

Table 6.1: Motors versus configuration jumpers

Motor	M2	M1
X	U29	U25
Y	U30	U26
Z	U31	U27
4	U32	U28

The driver chip supports four different step modes: full step, half step, fine step and micro step. Fine step provides eight intermediate sinusoidal current values for each full step and micro stepping provides sixteen intermediate current values.

Typically, micro stepping is preferred for its smooth ride, but sometimes speed requirements dictate the use of half or even full step.

Table 6.2: Jumpers versus Step Mode

M2	M1	mode
-	-	1 Full Step (2 phase)
-	X	2 Half Step (1-2 phase)
X	X	8 Fine Step (2W1-2 phase)
X	-	16 Micro Step (4W1-2 phase)

'-' indicates no jumper installed

'X' indicates jumper is installed

(value) refers to TB6560 excitation mode, see data sheet for details

Above may feel a bit complicated so an example maybe useful.

Most stepper motors have 200 steps or step angle of 1.8° so we have:

$$steps = 200(steps/rev)$$

For this example we assume that we want to run X-axis motor at 'Half Step' mode so from Table 6.2 we see that we need to have jumper M1 installed and from Table 6.1 we see that for X-motor M1 jumper is labeled U25 (don't forget to see the errata for the TOAD4 board, some of the jumper labels in the early board are wrong).

While looking at Table 6.2 we also note that 'mode' value for 'Micro Step' is 2 so we have:

$$mode = 2$$

To make this more interesting and life-like let's suppose we use a lead screw to move the X-axis and the screw has a pitch of 3 mm/revolution and that we use a toothed belt to drive it with a 16 tooth pulley on the motor axis and 45 pulley on the lead screw, so we have:

$$pitch = 3 * \frac{16}{45} = 1.066666(mm/rev)$$

Putting it all together we have

$$step_ratio = \frac{2 * 200}{1.066666} = 375.000(steps/mm)$$

Now would be good time to check how fast we can move the X-axis.

The maximum theoretical step rate is about 100 kHz, for jitter and other reasons the maximum recommended pulse rate is about $\frac{1}{5}$ of that, say 10000 pulses/sec. You need to divide this by the *mode* factor we looked up above so in our example the maximum step rate is 10000 steps/sec and so our max speed is

$$\frac{10000}{375} \approx 26mm/sec$$

Here is a Top Tip!

Even though EazyCNC guides you if you try to enter too big (or small) value to an entry field and even tells you what the limiting parameter is and further tells you what is the maximum value you can use, sometimes this can turn into a bit of a chore.

So before you enter the step ratio, set the maximum jog acceleration and velocity for all axes (Mach Setup / Axis Setup) and movement (Mach Setup / Movement) to a very small values, say 1 mm/sec or 0.01 inch/sec. This will allow you to enter almost any step ratio, which is necessary as the step ratio is a function of your gearing and thus won't budge.

Once you have entered the correct step ratios try to set the accelerations and velocities to a very large values, say 1000 mm/sec or 10 inch/sec and EazyCNC will tell the maximum possible values, so enter and use those.

Scaler -entry field

This entry field is used to specify a scaling factor for each axis which is used when the tool path planner code in the software plans the tool moves.

Normally you set this to 1.0 in which case an F-word in your G-code specifies the feedrate in mm (or inch) per minute for XYZ axes and degrees per minute for the rotating axes ABC.

However, sometimes you may want to change that behaviour.

I'll give you two examples.

Example 1

You have 'knee-mill' or a plasma cutter in which the Z-axis cannot be run at the same speed as X and Y axis. Instead of using the F-word to slow down movement when ever you move the Z-axis you can use thew scaler.

If the Z-axis can only be moved at half the speed of XY axis you set the scaler for Z axis to 1 / 0.5 => 2. This will in effect cause the Z-feed rate to be scaled down by a factor of 2.

Example 2

Suppose you are controlling a mill where the A axis is rotating a cylindrical workpiece of 100 mm in diameter and you are working on the perimeter. To maintain the correct cut rate even when you are using the rotation you need to use the scaler.

In this example case a scale factor of 1 for A axis and F word of 1 would give you a feed rate of 1 degrees per minute which is in effect $100 \text{ mm} * \pi * 1 / 360 = .872 \text{ mm/minute}$ which is obviously wrong.

To correct that you would need to set the scale factor for A axis to $100 * \pi / 360 = 0.872$.

Master Motor -popup menu

TOAD4+ allows you to select for each axis which physical motor is used to drive the axis.

You select that with this popup menu.

On the TOAD4 PCB the motors are number like this: X=0, Y=1, Z=2 and A=3.

Typically you don't want to change this to avoid confusion.

Below this pop up there is 'LED' that indicates whether the home/ref switch for selected master motor is active or not.

If you use a home/ref switch in your system you can use this 'LED' to diagnose and ensure that the switch works and is active at the lower (left,near,bottom) end of its movement. To do that move for example the X-axis to the extreme left and ensure that the 'LED' turns ON, then as you move the X-axis to the right, the 'LED' should turn OFF when the switch is no longer active.

If the polarity is wrong, change it with the 'Home polarity' -popup.

Slave Motor -popup menu

On some mechanical setups paralleling two motors are handy and allow doubling of the motive power without using larger motors.

TOAD4+ allows you to select for each axis a second physical motor that is driven when that axis moves.

You select that with this popup.

Below this pop up there is 'LED' that indicates whether the home/ref switch for selected slave motor is active or not.

When motors are paralleled they perform the exact same movements, except when you press the HOME button. Homing is performed independently for each motor so that the system will align itself correctly based on the home/ref switches.

Note that when motors are paralleled then all the settings for both motors are taken the same motor setup i.e. axis so the gearing, motors and switch setups need to be identical.

6.8.2 Axis Limits -panel

EazyCNC can guard movements against set limits to prevent crashing the mechanism.

This is especially useful in Jogging where it is too easy to run too fast to an end of an axis.

However the limit checking is not fool proof and it depends on the operators (that's you!) diligence to work properly. If you for example put a large cutter into the spindle chuck but don't tell EazyCNC about it or move the axis manually by turning handles or forgot to 'home' the axes there is nothing EazyCNC can do about it.

A 'bad' a G-code move may still crash the machine and you need to visually satisfy yourself using the simulation mode that this will not happen.

Also worth remembering is that the limits checking does nothing to prevent crashing against the workpiece, fixtures or other obstacles.

The actual movement limits are based a fixed coordinate system independent of all the different G-code coordinate systems. The limits are expressed in the current unit system unscaled and unaffected by any G-code coordinate system transformations.

The origin of the limits coordinate system is at the home/ref switch position, so if the home/ref switch is not used you should not enable the limits because the position is physically undefined.

If you want to use the limits you must remember to 'home' all axes by pressing the 'HOME' buttons if the TOAD4 has been power cycled (it is TOAD4 who maintains the coordinates so it will loose track of the position if it is turned off).

Also worth remembering is that if you use the limits you should have the motors energized at all times otherwise the motors will 'lose' their positions, so don't use the 'Auto Off' current mode.

Limits Enabled -checkbox

Limits Enabled -checkbox controls weather EazyCNC enforces the limits for the axes or not.

Min/Max - entry fields / Touch -buttons

These entry field controls the minimum and maximum coordinates allowed for the axis, expressed in the current unit system.

The easiest way to set the limit is to disable the limit checking and carefully 'jog' the mechanisms to each end of the movement and press the corresponding 'Touch' button which will then set corresponding limit based on the current axis position.

Remember to 'home' the axis before setting the limits and don't forget to enable the limits once you have set them.

And don't forget to verify your limits!

6.8.3 Safe Z -panel

This panel only appears on the Z-Axis setup sub panel.

The 'Safe Z' feature allows you to define a Z coordinate that to which you can move the Z-axis by pressing the Safe Z button in the jog controls.

The idea is that you set this so high that it will always be safe to move in XY at that Z setting without hitting anything.

This can be handy for example for changing tools/cutters.

Safe Z - entry field

In this entry field you can enter the safe Z value.

This value is in absolute machine coordinates, just like the axis limits. Remember that the absolute machine coordinates are defined by where your HOME-switch is located and the 'Home offset' for that axis.

As a safety measure the initial value of this field is 'NaN' which signals to both you and the software that the Safe Z coordinate has not been set.

6.8.4 Jogging -panel

Jogging refers to manually moving the axes with either the 'jog buttons' or with the joystick.

The settings in this panel control the details of jogging.

When you 'jog' an axis, the axis first moves slowly i.e. crawls. This goes on for some short time after which the movement accelerates until it reaches the jog speed. Jogging then continues at that speed as long as you keep jogging or you hit the end of movement, after which the speed decelerates to a halt.

In many CNC mechanisms the axes are not created equal, some motors are by necessity stronger than others and thus the desired jogging characteristics are different and you want to set them individually for each axis.

Crawl Velocity -entry field

This entry field controls the initial ie crawl speed of jogging, you typically want to have this pretty slow.

Crawl Length -entry field

This entry field controls how long a distance the crawl will go until the acceleration starts if you keep on jogging.

Min Crawl -entry field

This entry field sets a minimum crawl distance, ie the axis will always move at least this much even if you jog very briefly.

Acceleration -entry field

This entry field control the acceleration/deceleration rate of the movement, you probably want to have this as high as possible but not so high that there is a risk of stalling the motor or the motor skipping steps.

Only experimentation can find a correct value for this, start with a small value and first find the maximum jog speed before you try to maximize the acceleration.

EazyCNC has a motor test function, see section [6.11.3](#), to help you to determine the limits of your motors and mechanisms.

Jog Velocity -entry field

This entry field controls the jog or maximum speed the axis will run when you jog it. You probably want to have this set as high as possible but not so high that there is a risk of stalling the motor or the motor skipping steps.

Only experimentation can find a correct value for this, start with a small value and find the maximum at which you can jog back and forth to a given DRO value watching that the tool tip hits exact same position every time.

A manual way to check that the motor has not lost any steps is to 'home' the axis and see that as the axis approaches the home position the DRO will not suddenly jump to the reset value when the

reference switch is reached, this is not wholly accurate if the motor only loses a small number of steps but typically it is a all or nothing with stepper motors.

6.9 Setting the Motion limits

The parameters in the Figure 6.7 screen tell EazyCNC how fast it is safe to accelerate and run the

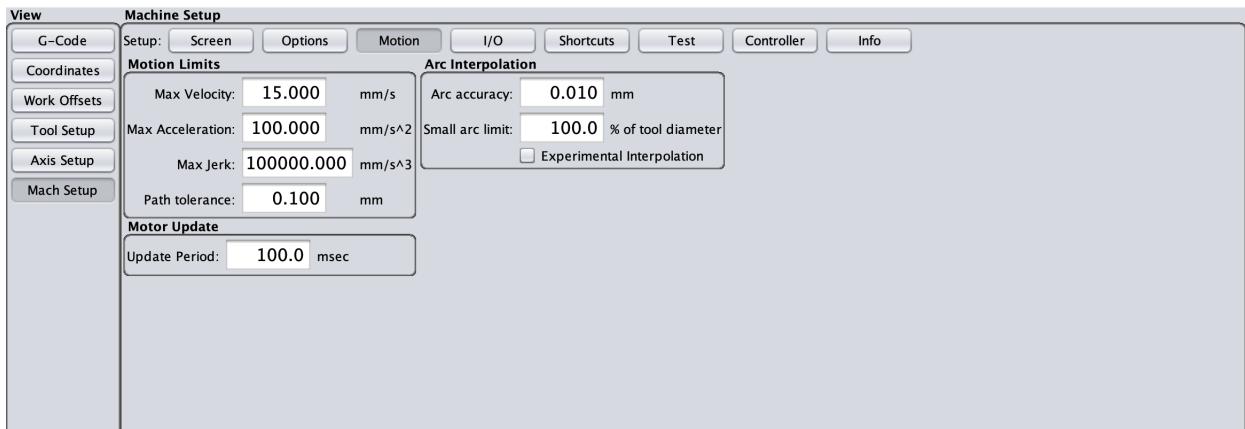


Figure 6.7: The Motion Limits screen.

motors, how often the motor position and speed should be updated and how accurately you want EazyCNC to follow the tool path described by the G-code file.

Next to the individual axis/motor parameters these are the most import parameters to carefully set as if you set the speed and acceleration to too high values the steppers will lose steps and the accuracy is ruined or the motors will completely stall.

On the other hand you will want to have the values as high as reasonable so as not to waste time in machining and with some cutters like plasma torches even the dimensions and quality of cut are dependent on high enough speeds.

Note that these settings here set the maximum values, G-code programs specify the actual value which can be lower or higher than what you specify here. If the G-code specifies a lower value then that applies but if the G-code specifies a higher value then what you have set up here applies.

The only way to find out the maximum acceptable value you can use is to try progressively higher values and verify the accuracy of the motions for each trial.

Note that the values here are common to all axes. See section 6.11.3) on how to do this for each axis. Once you have found out the maximum velocity and acceleration for each axis, pick the minimum of those values and use that here as the maximum velocity and acceleration for machining.

6.9.1 Velocity -entry field

Enter the minimum of the maximum velocities your motors can handle.

Note that it is acceptable to use/have too high feed rate in G-code (the F-word) as EazyCNC will

automatically limit the feed rate to the maximum velocity you have set here.

6.9.2 Acceleration -entry field

Enter the minimum of the maximum accelerations your motors can handle.

6.9.3 Path tolerance -entry field

This field tells EazyCNC how accurately during machining it should try to follow the tool path described by the G-code program.

If you enter a value of zero here then the tool path is accurately reproduced but this necessitates that the tool comes to a complete stop between cutting movements (G-codes G1, G2 and G3).

This is because to have the tool follow the path absolutely without stopping at corners would require infinite acceleration and that strong motors are hard to find.

If you enter a non-zero value then EazyCNC will try to follow the prescribed tool path to within the specified limit but using the leeway given by the tolerance to allow continuous movement and not stopping between cuts.

Rapid tool positioning (G0) always stops at the end of the movement so this parameter does not apply.

If you use EazyCNC with a plasma torch it is important to try to minimize the speed variations as the cut width depends on the travel speed of the torch so use as large path tolerance you can accept.

6.9.4 Z-scaler -entry field

Sometimes the Z-axis motor is different from the X and Y axis motors, for example in a plasma cutting machine the X/Y movements need high acceleration and velocities but the Z-movement is rather small and thus a smaller motor that is not capable of such feats can be used. To prevent the system from exceeding the Z-motor capabilities a Z-scaler value (smaller than one) should be entered. This will effectively scale down the accelerations and velocities for G-code movements that involve the Z-axis.

6.9.5 Update Period -entry field

Setting a suitable value for the Update Period is also critical.

This value depends on the speed your computer. A faster computer allows for a faster update period, however there are limits on how fast it is acceptable to update the speed and position into TOAD4.

USB limits the update period to a minimum value (maximum update speed) of 1 msec, but typically you should aim to a value of 10 to 20 msec on a modern PC hardware. Note that this has nothing to do with step rate because we are transferring position values to the TOAD4 and the actual steps are generated on the TOAD4 board.

To understand how the update period affects things here is brief description.

TOAD4 maintains a queue of movement commands so that small pauses, interruptions or hiccups in the computer won't affect cutting movements.

If TOAD4 runs out of movements commands ie the queues run empty which happens if the computer does not send new commands fast enough on average then the cutting movements will stop until more commands arrive.

At best this is not desirable as an interrupted cut can leave a mark in the workpiece and at worst the accuracy may be lost if the movement was at such a high feed rate that the motor cannot be accurately stopped from such speed.

The queue capacity is 16 commands, so an update period of 20 msec means that there are commands for 16×20 msec or 320 msec and the system can tolerate a pause, such as Java garbage collection, for that length of time. So longer period allows for longer pauses and hiccups in the host computer system.

On the other hand TOAD4 can only change speed at the interval of the update period so when the speed is changing, like when the machine is cutting a circular path, the speed is always partially 'wrong' for the duration of the update period.

So longer Update Period will result in an increased positional error, which fortunately is not accumulative.

The upper theoretical limit for such an error is 'feed rate \times update period', for example if you are cutting at 1200 mm/min which is 20 mm/sec and your update period is 20 msec then the maximum error caused by the update period is $20 \text{ mm/sec} \times 0.02 \text{ sec}$ which is 0.4 mm. This would probably be un-acceptable for milling but such high feed rates when milling are rare and for plasma cutting where such high feed rates are common this is in the same ballpark as cutting accuracy anyway. Besides that is a worst case error unlikely to happen in practice.

6.10 Shortcuts setup

EazyCNC is really designed to be used on a PC or tablet computer with a touch screen. However you can use most of the functions with convenient single key keyboard shortcuts on a conventional keyboard or with a gamepad function keys and joystick.

The key assignments are fully user definable so you can configure these as you best please.

To examine or change the key assignments go to the Shortcuts setup screen, see [Figure 6.8](#)

On the left side column you see the keys and on the right side column the corresponding assigned functionality.

To change the key, click on the left side column at the key you want to change; this will popup a dialog prompting you to press the new key you want to assign for that functionality.

To change the functionality click on the right side column of the key assignment you want to change and from the popup pick the functionality you want to assign.

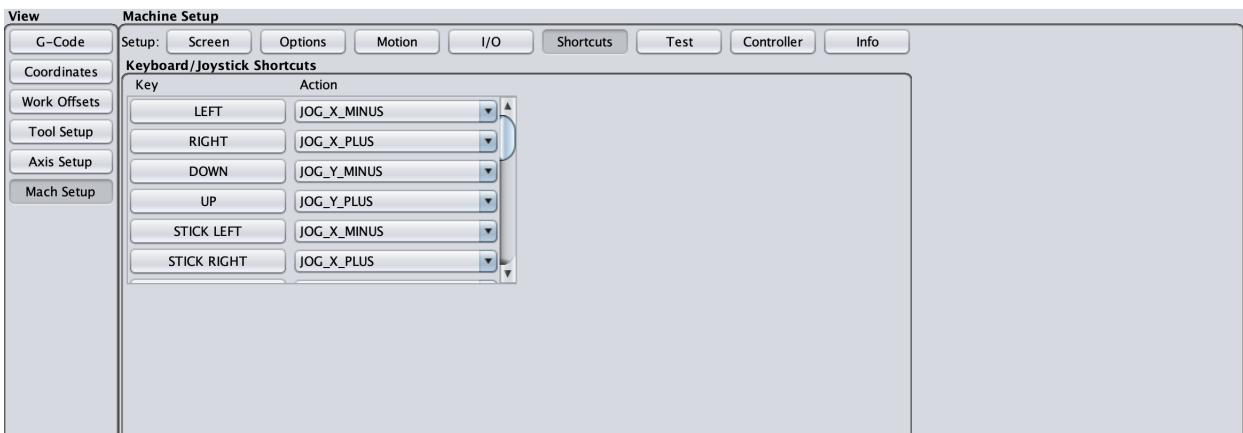


Figure 6.8: The Shortcuts setup screen.

To create a totally new keyboard shortcut scroll to the bottom of the list and click at the 'New Shortcut' button at the bottom of the left column.

To delete a shortcut click on the left column on the shortcut you want to delete and from the dialog that pops up select 'Delete', see Figure 6.9

Figure 6.9: The Redefine Shortcut screen.

6.11 Test screen

This screen, see see Figure 6.10

is for testing the TOAD hardware. This is especially useful in setting up the CNC hardware to ensure that the wiring etc is correct and functions as it should.

6.11.1 Inputs -panel

In the inputs panel all the inputs can be observed in real time.

You can use it to check for example that that the reference switches are correctly wired and function.

Note that these are 'raw' signals from the hardware. For example the if the probe 'LED' on this screen is ON even though the probe is not active, this does not indicate a problem. The polarity of the probe

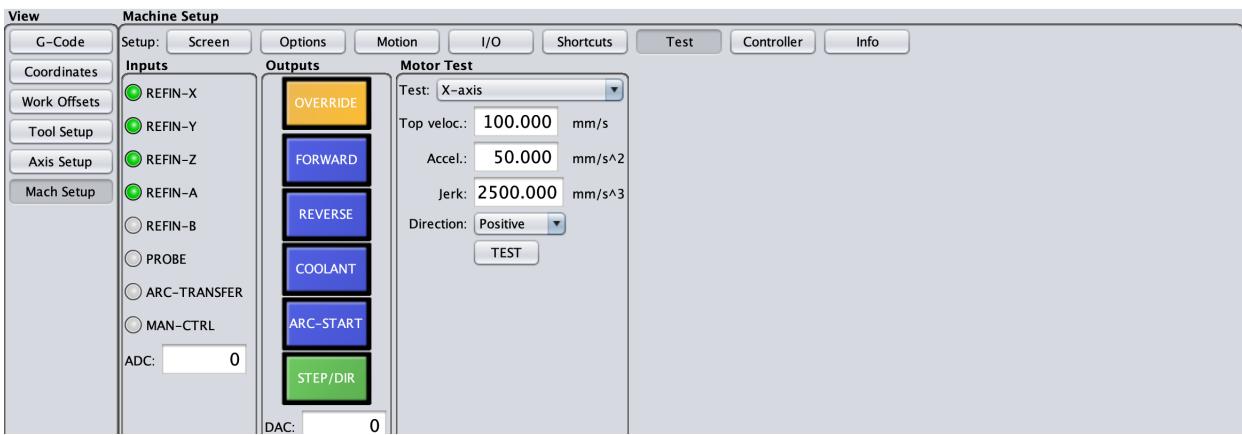


Figure 6.10: The Shortcuts setup screen.

signal is determined in the I/O-screen. Likewise for the REFIN signals, the polarity is determined in the corresponding Axis Setup panel.

The ADC (Analog to Digital Converter) shows the ARC VOLTAGE input value.

6.11.2 Outputs -panel

In the output panel all the outputs can be directly controller with the blue buttons.

To control the outputs with the blue buttons you must first enable the manual override with yellow OVERRIDE button.

Warning!

When you enable the overdrive all the outputs are controlled by buttons and entry fields on this screen.

Whatever hardware is connected to the outputs will be activated/deactivated according to this screen!

This is potentially destructive and/or dangerous, possibly even fatal!

For example, if the spindle is connected to the FORWARD output and it is the spindle is powered then pressing the FORWARD button will start the spindle and it will run until you turn it off.

Same applies to the green STEP/DIR button. This will exercise the STEP/DIR/ENABLE signals on all axis. If motors are connected then all the axis will move back and forth which may damage the equipment or cause injury.

The DAC (Digital to Analog Converter) controls the SPEED output. The range of values is 0..100%.

6.11.3 Test -panel

The controls in this panel can be used to test and find out the maximum acceleration and velocity for an axis.

When you click the 'TEST' button EazyCNC will perform a test movement on that motor/axis and report the accuracy if you have a reference switch installed.

If you don't have a reference switch then you will need to use a Dial Test Indicator or some such to measure the accuracy.

6.11.4 Pre-requisites

Note that this test can damage your machine if not performed carefully and as intended.

The test run requires free travel of 25 mm or one inch plus the distance it takes to accelerate from the start velocity to the top velocity and back.

To use this test you must have the reference switch located at least 30 mm away from the negative end of the axis movement.

If you don't have that 30 mm spare travel you run the risk of hitting the the end of the axis movement range on the return leg of the test run. It is acceptable to temporarily move the reference switch to a suitable location for this test or use a temporary switch if you so desire.

If you don't have a reference switch then you need to ensure that you start the test from a position on the axis from which there is enough free travel on both sides of the starting position.

6.11.5 The Test run

When you click the the 'TEST' button the test movement is performed as follows.

First EazyCNC 'homes' the axis/motor ie it moves slowly towards the reference switch and then just out of it.

EazyCNC makes an internal note of this step position.

Next the axis/motor starts to move into the positive (or negative, depending on which direction you have selected) axis direction and accelerates at the given acceleration until the motor reaches the given test speed. The movement continues for 25 mm (about 1 inch) and then it decelerates back to stand still.

Then the axis is homed again and a note of the step position at which the reference switch is detected is noted down.

The difference between the two home positions noted down is reported as the accuracy or repeatability of the movement at the given acceleration and movement velocity.

A positive value indicates that steps were lost on the way out i.e. during acceleration or high speed movement. A negative value indicates that steps were lost on the way back i.e. slow movement; this should not really ever occur.

A small non zero value is acceptable or even expected as it is unlikely that the system can be absolutely accurate all things considered, but repeated tests at given acceleration and velocity should show consistently similar values.

To guarantee that the test is valid for machining conditions the acceleration is performed step wise at the current machine Update Period just as it will when take place when executing G-codes.

Therefore you need to remember that if you change the update period it is good to re-run the test for each axis, especially if you are running close to the speed and acceleration limits of your system.

Top Velocity -entry field

This is the velocity you want to test for so keep adjusting this and retesting until you have maxed out your system.

Acceleration -entry field

This is the acceleration you want to test for so keep adjusting this and retesting until you have maxed out your system.

Direction -popup menu

This selects weather the test movement direction will be along the positive direction or negative direction from home/ref position.

This is the acceleration you want to test for so keep adjusting this and retesting until you have maxed out your system.

6.12 Info screen

This screen displays bunch of system related information, see [Figure 6.11](#)

Most of the information displayed is just so that you can report back to eazycnc@eazycnc.com if you are reporting a bug.

The two pieces of information that are useful for you are the 'EazyCNC version' to identify which version you are running (it is also shown in the window title if that is visible) and 'EazyCNC parameters' which tells you the location of the configuration file in case you have doubts about which configuration file is being used.

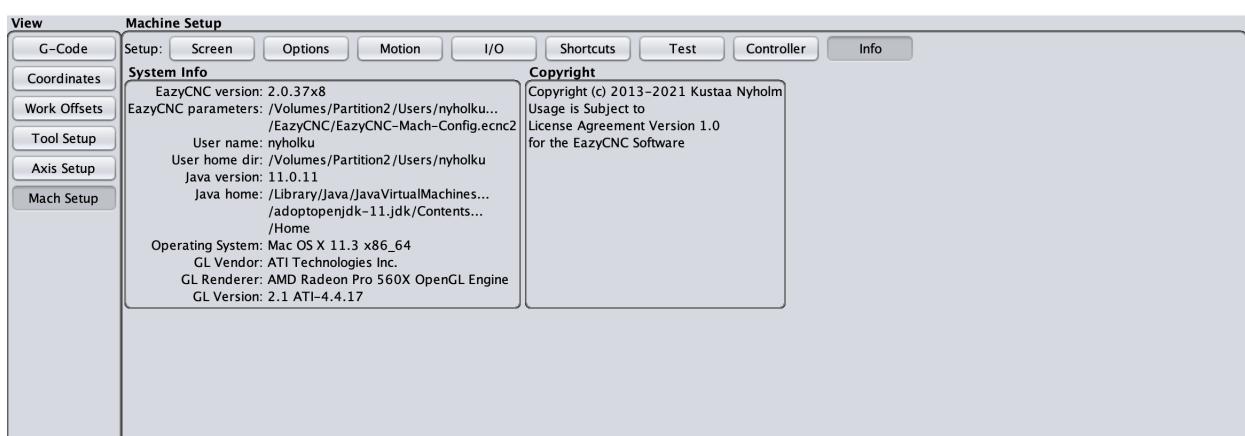


Figure 6.11: The System Info screen

Chapter 7

Operating Your CNC Machine

This chapter tells you all how to operate EazyCNC to machine stuff with G-code.

G-code is covered in more detail in Chapter 9, but since the sole purpose of EazyCNC is G-code interpretation most functionality is related to G-code in some way I cover that in this chapter.

7.1 Using Keyboard and Joystick

Most of the EazyCNC functions needed to operate your CNC machine can be activated from the keyboard with single key from the computer's keyboard.

A Joystick or Gamepad can also be used to activate most of the functions.

To extend the number of functions accessible using the Joystick/Gamepad buttons EazyCNC supports a software 'Shift Lock' -button, Figure 7.1. If this button is activated then the Joystick/Keyboard generates an other set of keys onto which functions can be attached.

See Section 6.10 to learn how to view and change both keyboard and joystick shortcuts.

The default keyboard / shortcuts assignments are given in Table 7.1.

Figure 7.1: The Shift Lock -button

Table 7.1: Keyboard and Joystick Shortcuts

Key	Function
R	RUN
H	HOLD
S	STOP
Space	Toggle RUN/HOLD
C	Toggle Coolant ON/OFF
T	Toggle Spindle ON/OFF
Cursor LEFT	Jog -X
Cursor RIGHT	Jog +X
Cursor DOWN	Jog -Y
Cursor UP	Jog +Y
Stick LEFT	Jog -X
Stick RIGHT	Jog +X
Stick DOWN	Jog -Y
Stick UP	Jog +Y
Button 1	RUN
Button 2	HOLD
Button 3	STOP
Alt-Cmd S	Save Configuration (Mac OS X)
Alt-Ctrl S	Save Configuration (Windows/Linux)
F12	Toggle Java console on/off

7.2 Using Manual Pulse Generator (MPG) / CNC Pendant

Manual Pulse Generator or Pendant is a remote control for a CNC machine.

Very often the computer is placed further away from the milling machine or plasma cutter to protect it from the chips, sparks, dust and other grime.

Also the keyboard is not the most convenient means to jog the milling table around or manually position the plasma torch.

Hence the by now ancient invention of the MPG, so named because in the primordial times people were talking about pulse generation for the servo motors that controlled the axis movements.

EazyCNC supports a small selection of commercially available MPG pendants.

Manufactures of these MPG pendants do not release information about how to interface their products to any old CNC software. This seems counter productive to their commercial success but it is what it is. So to interface them one is reduced to searching the interweb for info and acquiring and reverse engineering these pendants.

It is important to realise that this means that EazyCNC author has no control over how the pendant works and cannot guarantee the functionality or safety to any degree. Also this makes implementing some trivial functionality impossible because the manufacturers firmware does not allow it, a case in point is adding custom messages to pendant displays or making the display more sensical.

It is perfectly possible that if you buy one of the supported pendants that it does not work the same

as described here because the manufacturer has changed the firmware or something. This may not be likely but it can happen.

Caveat emptor.

Please note that these commercial pendants have labels in the keys for the functions that the manufacturer has intended. These labels / functions do not map very well to EazyCNC functionality in every case.

Importantly if you see a label on the keypad or rotary knob that does NOT imply that the function is available with EazyCNC using that pendant or if it is that it functions as it would with the CNC software that the manufacturer supports.

Instead you should take the view that the keypad is an empty keyboard on to which you can assign any functions you like.

Out of the box EazyCNC configures the keys on the keypad and functions to the 'best' available functionality in EazyCNC.

However you are not limited to these, all the keypad keys can be configured in the Mach Setup / Shortcuts screen, see section [6.10](#),

Note that for each key it is possible to associate two functions, one for a short press of the key and an other one for long press of the key. To do that simply press the key on pendant for shortly or for a 'long' time when assigning the shortcut.

7.3 Simulation versus Cutting Metal

EazyCNC can be in one of two operating modes, simulation mode or machining mode.

The simulation mode is handy for training or experimentation and for G-code verification before you actually machine anything. Because no TOAD4 motor controller is used or needed in the simulation mode you can install and run the EazyCNC software in any computer and use it in the comfort of your study or office.

The simulation mode attempts to be step-accurate i.e. simulate the exact movements the stepper motors will make and it runs in real time (if your computer is fast enough) meaning that simulation takes as long as the actual machining will take. As this may take a long time you may speed things up when simulating by using a faster feedrate (the F-word G-code) but this will affect the small details of the cutting paths so the path generated at high speed is not 100% same as the lower speed path.

You control the operating mode with SIMU and MACH buttons at the bottom of the screen, Figure [7.2](#), the current operating mode is show with the button lit.

To toggle a mode on or off click the corresponding button.

Note that the stepper motor drivers are enabled/disabled when you press the MACH button. When the motor drivers are disabled they may not hold their exact position and thus accuracy may be lost if you exit MACH mode even temporarily before you have finished machining your part.

Figure 7.2: The operating mode control and indicator buttons

7.4 Status Display

At top of the panel titled 'Machine Controls' at the bottom of the screen, Figure 7.3, there is a status/error display.

Figure 7.3: The status/error display

This display shows the general status of the system or a helpful error message in case of an error.

Most errors are transient in nature because they are the results of an operator (that's you) mistake, such as pressing the right button at the wrong time or entering an invalid value into an entry field, thus the error messages as just shown briefly accompanied with a beep sound.

If you are not able to read the error/message quickly enough you can press and hold the '?' button down to re-call the last error message and read it at leisure.

During machining it is possible that the G-code contains messages to the operator, via the '(MSG, operator message)' -mechanism, and those messages are also displayed in this display.

7.5 Interactive Execution of G-code

The status display line doubles as an interactive G-code execution entry field. To execute G-code interactively click on the status line, type in G-code and hit ENTER-key.

This feature should be used with extreme caution as it is very easy to enter G-code commands that damage the machine or the workpiece.

Even more care and forethought needs to be exercised if the interactive execution is used in the middle of machining when the system is in the HOLD-state, because the the interactive commands may violate the expectations built into the G-code.

For example it is possible to turn off the spindle interactively with the 'M5' code in which case continuing with the machining is likely to result in a broken milling cutter when the machining is continued and the spindle is not running.

7.6 G-code display

On the main screen the top right hand quarter of the screen is occupied by the G-code display and the associated controls, Figure 7.4.

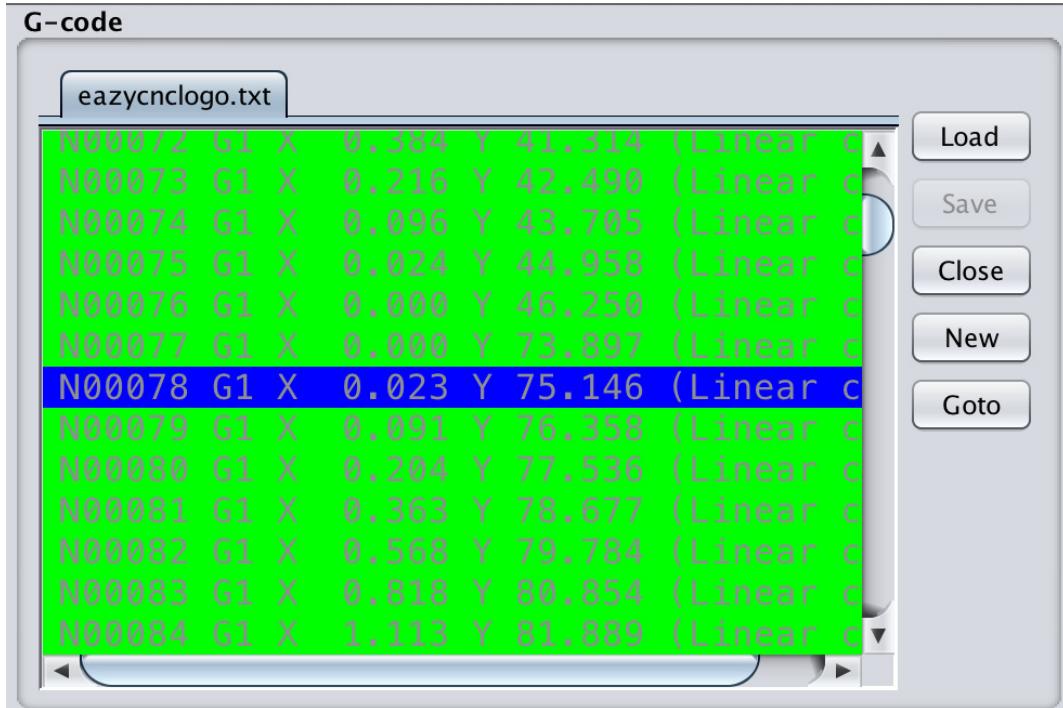


Figure 7.4: The G-code editor and display panel

The current G-code file is displayed there. Only one G-code program can be open at any given time, but if it calls subroutines in an other G-code file it is possible that multiple 'tabs' or files are displayed there.

The next G-code line to be executed is highlighted in blue. If there is an error in the G-code then the line containing the error is highlighted in red and the associated error message is displayed in the status/error display.

The background of the G-code display turns green if the system is in the RUN or HOLD state, indicating that the system is either machining or ready to continue machining.

7.6.1 Loading G-code for execution

In order to execute a G-code program you need to load it into the EazyCNC first, to do that, click 'Open' button and select the G-code file to load. G-code files are pure text (7-bit ASCII) and so often have a '.txt' extension but that is not mandatory, some people and systems use '.nc' .

7.6.2 The Goto -button

G-code programs are meant to be executed from the beginning to the end. However it is possible to start from somewhere else, for example if you need to continue execution after a blackout, even if that is not recommended.

To start the machining from somewhere else than the current line highlighted in blue, click on any line and then click the 'Goto' button, this will move the highlight to that line and machine will enter the 'HOLD' -state.

The caveat is that because you are skipping G-codes when you 'Goto' a specific line in the program you maybe breaking assumptions the G-code generator, be it a person or a CAM software, made when the code was written and this may have consequences.

For example a plasma cutter is typically programmed to start the cut with a piercing burn outside the actual part outline and if you skip that the arc may not be established and the metal not be pierced or the piercing may leave its mark on the part.

7.6.3 Editing G-code

It is also possible to edit and even create G-code files directly in EazyCNC, but this is not recommended. EazyCNC is not a general purpose text or G-code editor, anytime you edit the code EazyCNC will go through the whole code and re-calculate the tool path and this can be slow, especially if the G-code file is very long, as it very well can be.

To edit the code ensure that EazyCNC is in the stopped state (you cannot edit the code while machining) and just click on line you want to edit, most standard basic text editing facilities work as you would expect.

To create a new G-code file from scratch click the 'New' button.

An asterisk, '*', after a file name indicates that the file contains unsaved changes, to save the changes to the actual file click the 'Save' button.

7.7 Toolpath display

On the main screen the top lefthand quarter of the screen is occupied by the toolpath display and the associated controls, Figure 7.5.

In this panel the toolpath that the currently loaded G-code represents is illustrated in a three dimensional view.

The movement limits of the axes are displayed as white cube and a visual reference to assess the toolpath is display as colored grids, see Figure 7.6.

Note that the white cube is only displayed if you have enabled the axis limits, see section section 6.8.2.

If the white cube blinks, then the EazyCNC has not been HOMEed by pressing the HOME buttons for each axis and thus the EazyCNC does not know where in the real physical world the axes which means that the limits are not reliable at the moment. Press HOME on each axis to remedy the situation.

The grids are always displayed in the coordinates defined by the current work offsets. This is convenient because it allows you to visually reference the toolpath against the grids which is the purpose. You can change the grid colors, see section 6.5.8.

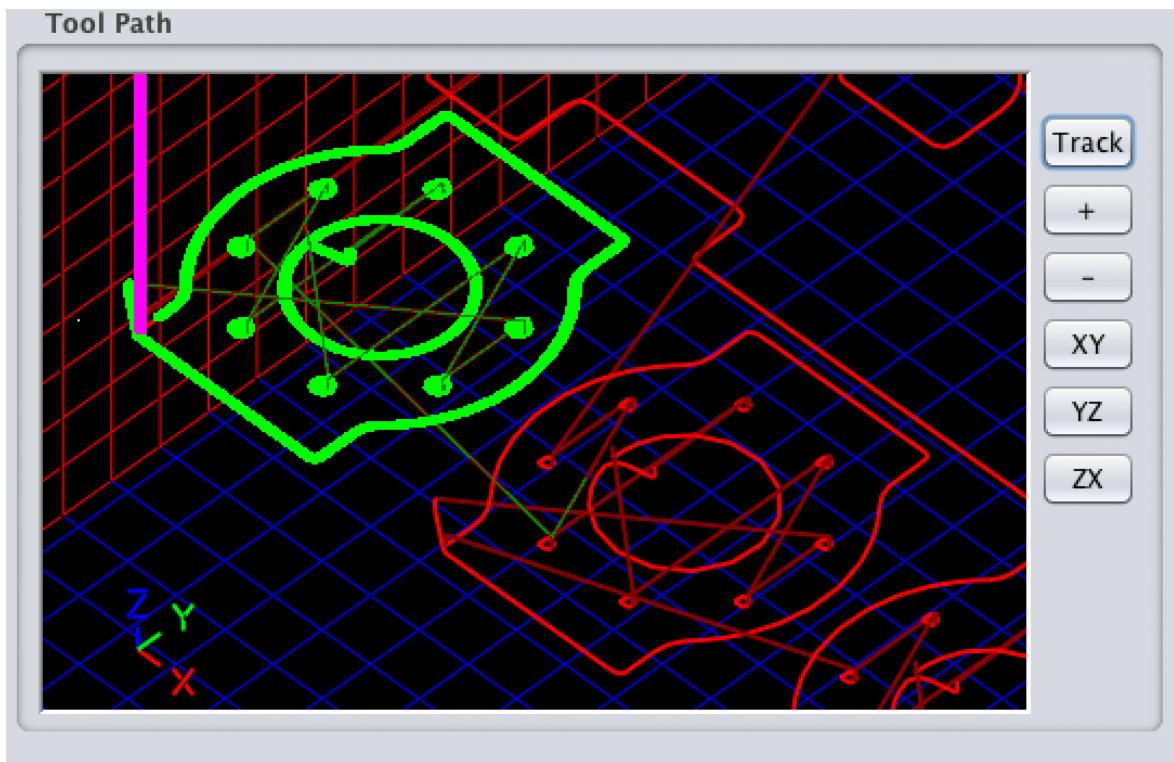


Figure 7.5: The toolpath display panel

However if you change the current work offset (see section 7.17.2) or you have multiple work offsets in use in your G-code you have to be careful before you jump into conclusion that something is wrong with your G-code or the grids.

The cutting tool is illustrated as a purple cylinder and the actual tool path is displayed as series of connected red and green lines of different intensity and line width. The colors can be changed, see section 6.5.7.

The display is updated in real time as the machining progresses. The toolpath machined or cut so far is displayed in green and the yet to be cut toolpath is displayed in red. You can change the colors, see section 6.5.5.

For the already machined toolpath, in green, the width of the line corresponds to the width of the tool used to cut that path if the spindle was turned 'on' during the machining, otherwise the toolpath is shown as a thin line. The colors can be changed, see section 6.5.5.

Whether the spindle is 'on' or 'off' for a given toolpath segment is indicated by the intensity of the color of the line, spindle 'on' is illustrated with bright red or green and spindle 'off' is illustrated with a darker shade.

When the G-code program is executing or running you can see, if you look carefully, that the green toolpath appears to precede the purple tool, this actually accurately represents the fact that the movement commands are queued in the motor controller waiting to be executed.

Figure 7.6: The G-code editor and display panel

7.7.1 Controlling the toolpath display

If the 'Track' button is not active you can move around the three dimensional virtual space and inspect different parts of the toolpath by clicking and dragging in the toolpath display panel. If the 'Track' button is active the display is always automatically centered at the tooltip and follows it as the tool moves. You can toggle the tracking on and off by clicking the button repeatedly.

If you hold down the 'ALT' key on your keyboard while you drag with the mouse you can rotate the view. If one of the 'XY', 'YZ' or 'XZ' buttons is active then the rotation is disabled and the view is forced to be towards the corresponding coordinate plane along the 'plane normal' axis. For example if you have the XY button selected then the view is as if you were looking down from the top of the positive Z-axis towards the XY-plane.

Note that you can de-select any of the 'Track', 'XY', 'YZ' or 'XZ' by just re-clicking on it.

You can use the '+' and '-' buttons to zoom in and out to see more or less of the toolpath or you can use the mouse scroll wheel.

7.8 Coordinate displays aka DROs

The coordinate displays, Figure 7.7, also known as Digital Readouts or DROs, show the tool position in the currently active coordinate system in the currently selected units.

The coordinate system can be quite complex but for most practical purpose you can just think that the DROs just show the position EazyCNC thinks the tool tip is at the moment. If the DROs says that the tool X-axis is at position 100 and the G0 -code tells it to move to X150 then the tool will

travel 50 units to the right, no matter where it physically actually was.

By clicking at the DRO and typing in a number you can change the displayed value. This will not move the tool but will of course change how subsequent G-code coordinates are interpreted.

You can also zero the DRO by clicking at the 'ZERO' button.

If you press the 'HOME' button and you have a home/reference switch installed for that axis EazyCNC will drive the axis to the home switch position and then zero the DRO automatically. This establishes a repeatable absolute origin for that axis.

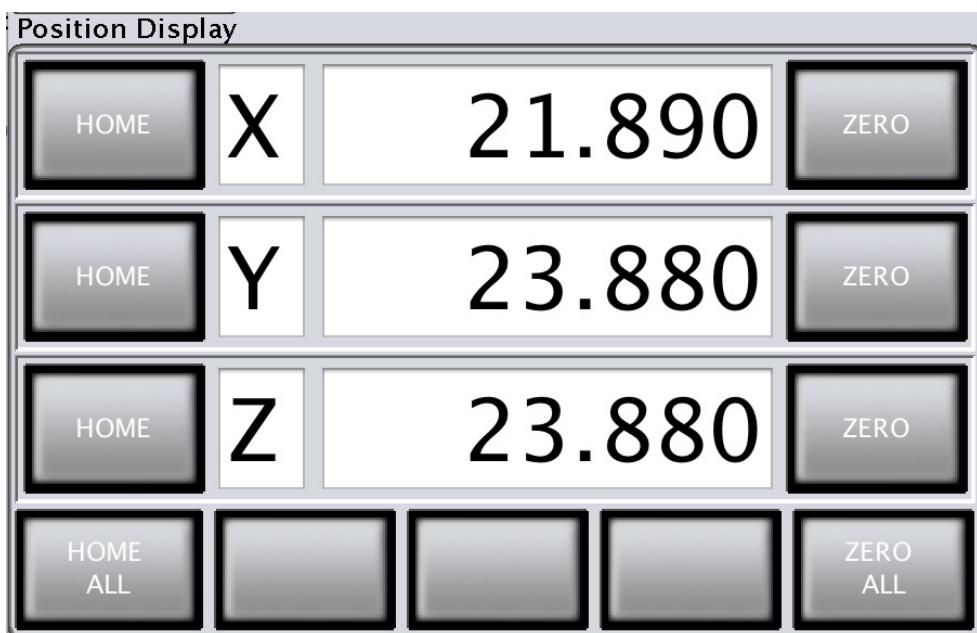


Figure 7.7: The Digital Readouts

7.9 Jogging

The Jog buttons, Figure 7.8 can be used to drive or move the motors/axes 'manually'. If you need to move the axes you should use the jog buttons and not any handles your machine possibly has for moving the axes, as if you use the manual handles EazyCNC has no way of knowing that the tool has moved and thus coordinate positions used by the system will be wrong.

The buttons to the right of the jog arrow buttons set the jogging mode i.e. they control how the jogging is performed.

Never turn off the power to TOAD4 to move the axes manually, always use one of the jog modes provided.

See 6.8.4 for details how to setup the speeds used in jogging.

7.9.1 MODE++ -button

This button is only available if the Screen Layout is set to Minimal. In every other screen layout all the jog buttons are available so there is no need to cycle through them using this button.

The current jogging mode is displayed right above this button.

By clicking this button you can change the mode.

There are six jog modes plus a manual mode which is engaged with the 'MANUAL' button.

7.9.2 FAST and SLOW jog modes

Two of the modes, FAST and SLOW, are used to move the axes as long as you press corresponding jog arrow button.

If the FAST mode is selected then pressing and holding a jog button will first move that axis slowly and then rapidly accelerate to the full jog speed. Pressing a jog button briefly will always move the axis a predetermined, minimal distance.

The 'slow' speed is specified in the 'Crawl veloc.' entry field for that axis in the Axis Setup -screen. The 'fast' speed is specified in the 'Jog veloc.' entry field and the acceleration is controlled by the 'Accel.' entry field. See Section [6.8.4](#) and Section [6.8.4](#).

If the SLOW mode is selected then pressing a jog button will move that axis slowly as long as the button is pressed.

The 'slow' speed is specified in the 'Crawl veloc.' entry field for that axis in the Axis Setup -screen. See Section [6.8.4](#).

A short press of the SLOW-button will move the axis the amount specified in the 'Min. crawl' entry field for that axis in the Axis Setup -screen. See Section [6.8.4](#).

7.9.3 Step jog modes x0,x1,x10,x100 and x1000

There are four step modes, displayed as 'x1000', 'x100', 'x10', 'x1' and 'x0'.

In all Screen Layout modes except Minimal these modes are selectable by pressing the corresponding buttons.

In these modes the axis will advance a single step for each press of the jog arrow button.

The size of the step depends on the mode which is named as the number of 1/1000th of the basic unit that you have set your system up with. For example if you have set up your system to use 'inch' then step size in step mode 'x100' moves the axis 100/1000th of an inch or 0.1 inch. Likewise if you use 'mm' then step mode 'x10' then causes the step size to be 10/1000th of millimeter or 0.01 mm.

Step mode 'x0' is special and causes the step size to be the smallest possible given your stepper motor setup i.e. the size is one step in this mode.

If you read carefully you noticed that I said there four step modes but I listed five. That is no mistake. In 'inch' mode the step mode 'x1000' is skipped and in 'mm' mode the 'x1' mode is skipped as they do not make sense the other being too large and the other being too small.

7.9.4 MANUAL -button

If this button is selected then the motor drivers in TOAD4 are disable i.e. the motor currents are turned off and the axes can be moved manually with the hand wheels of the machine.

This mode of jogging is intended to be used before or after machining to allow the operator to adjust the axes. This is necessary for example when using a feeler to touch a work piece before setting the coordinates.

When the machine axes are moved with the hand wheels EazyCNC has no way of knowing how much the axis has moved and thus the coordinates will be off/erroneous unless you reset (ZERO) them after moving the axes manually.

Note that when the motor drivers are turned off the axes are free to move and thus even small forces, perhaps even internal tensions of the machine or tool/workpiece contact may move the axes a small amount and thus ruin the accuracy of the coordinates.

So think twice before pressing this button.

Important, never ever turn off the TOAD4 to 'free' the axes if you need to move them manually, always use the MANUAL jog mode if you want to use the hand wheels to move the axes.

Worth noting is the if you exit the MACH mode then the motor drivers are also disabled freeing the axis. Note that exiting EazyCNC does not have this effect.

7.9.5 SPECIAL -button

If this button is selected then the jog buttons are hidden and a set of user defined 'function keys' are displayed. See Section [/refsec:user-functions](#).

To re-display the jog buttons click any of the jog mode buttons above.

7.9.6 SAFE Z -button

Pressing this button will cause the Z axis to automatically move to the absolute coordinate defined in the Z Axis Setup Safe Z entry field.

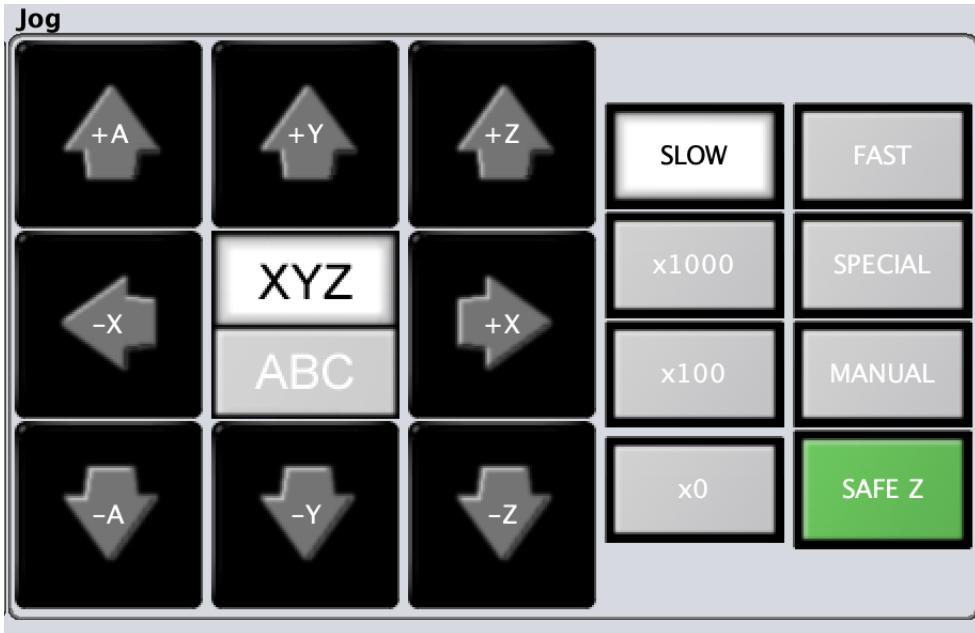


Figure 7.8: The Jog control buttons

7.10 Finding your bearings i.e. coordinates

Before you start machining you need to establish the correct relationship between the virtual part described by the coordinates in your G-code file and the work piece you are about to cut.

It is important to remember that EazyCNC does not really know where the tool is, it just keeps track of the position relying on an initial known position. Further even though EazyCNC can keep track of the tool position it knows next to nothing about the workpiece location.

There are ways to calibrate all three (the EazyCNC coordinate system, the actual physical axis positions and the workpiece location) in relation to each other, but most of the time this would be an overkill.

The relationship between the physical axis position and the coordinate system only really matter for two things: if you enable the axis limits and if you need to continue machining after a power down.

In the first instance, if EazyCNC does not have the correct relationship between the physical axis position and its internal coordinate system then it will allow you to drive the axis bang against one end of the movement and will unnecessarily limit your movements at the other end.

In the second instance if you lose power, a fuse blows or the job takes so long that you can't do it all at one go, unless the system can be returned to the same physical axis coordinate system relationship you will not be able to continue machining accurately after the system has been powered off.

The relationship between the EazyCNC coordinate system and the workpiece really only matters if you need to continue machining, see above, or you need to remove and remount the workpiece during the course of machining, work on existing part or the work piece is very close in size to the finished part.

7.11 The easy and lazy way

The easiest way to setup the coordinate systems is as follows. Just bolt down the workpiece. Jog the axes to ensure that you can reach all the parts to be machined without hitting the axes physical limits. Then jog the tool to an approximate location whose coordinates you know and set the DROs to those coordinates.

If you create your G-codes so that the finished parts smallest coordinates are at 0,0,0 i.e the part extends to the right, forward and up of the origin, then all you have to do after mounting your workpiece is to drive the tool to the bottom left corner on top of the workpiece, press 'ZERO' buttons to zero X and Y and type in the height of the work piece in the Z axis DRO and you are good to go!

For a simple system like a plasma cutter where the motors are not strong enough to cause any damage even if you hit ends of the movement above is very adequate, no home/reference or limit switches, no calibration, no nothing.

For milling you actual you want to drive the tool to the bottom left corner of the workpiece so that the tool is well within the workpiece so that there is good margin for cutting. And you also want to use set the Z-axis DRO to value slightly less than the height of the workpiece so that the cutter will not foul the table.

It is also possible to just carefully run the axes to end stops and zero the DROs or type in a know value for that position.

The downside of a this lazy way is that if the machining is 'rudely' interrupted you will not be able continue because there is no way to recover the lost system position. You need to scrap the part and start over. By rude interrupt I mean loosing power, hitting the emergency button or the software/hardware crashing for any reason.

Of course if you equip your system with a touch probe you can use that to measure the workpiece location and can then recover the position no matter what, as long as you use it in the first place.

7.12 Going pro

If you need or want to synchronize EazyCNC's coordinate system and the physical axes positions the easiest way is to have the home/reference switches installed. With those all you have to do after powering up the system is to press the 'HOME' buttons and the system will drive the axis to the switches and reset the coordinate positions.

For that to work accurately the switches need to perform repeatably. Good quality inductive proximity sensor can reach 0.0001 inch or 1 μm accuracy in optimal conditions. Optical sensors are an other option. Both are subject harsh condition and need protection from chips and stuff.

As the axes will travel at slow speed during 'homing' it is a good idea to have the reference switch in the middle of the movement range instead of at the end of the travel as this will cut down the homing time.

Above takes care of the EazyCNC coordinate system and physical machine axis relationship.

7.13 Adjusting Feed Rate

Feedrate is controlled by the F-word in your G-code programs but can be override with the feed override controls illustrated in Figure 7.9.

The idea is that while the G-code programmer designs at what feedrate the part should be cut and programs that into the code it sometimes it is necessary to adjust or fine tune that while machining.

You can turn the override on and off by clicking the 'ON' button and you can adjust the override with the '+' and '-' buttons.

When the override is off the display shows the current feedrate as set by the last F-word executed, when the override is off the display shows the overridden value.

The override can be expressed either as a percentage of the F-word value or as units/minute. To change that click on the button to the right of the display field.

You can adjust the override with the '+' and '-' keys or you can type in a new value. Adjusting or setting the override value will turn on the override.

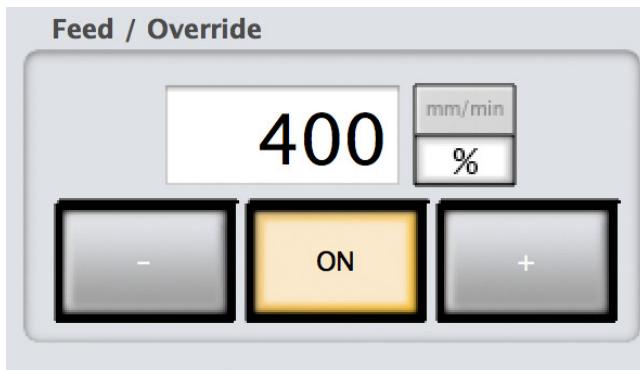


Figure 7.9: The Feed Override controls

7.14 Controlling the Spindle

Spindle is mainly controlled by your G-code program using S-word for setting the speed, M3 to turn the spindle 'on' clockwise, M4 to turning the spindle 'on' counter clockwise and M5 to turning the spindle 'off'.

You can manually control or override the G-code program commands with the spindle control illustrated in Figure 7.10, but as soon the G-code execution reaches next spindle control command that command will take over.

When the override is off the display shows the current spindle speed as set by the last S-word executed, when the override is off the display shows the overridden value.

You can adjust the override with the '+' and '-' keys or you can type in a new value. Adjusting or setting the override value will turn on the override.



Figure 7.10: The Spindle controls

7.15 Machining!

Finally!

7.15.1 Starting the machining

Executing G-code or machining with G-code is basically very simple.

You set the operation mode, simulation or machining, with the 'SIMU' or 'MACH' button.

You load your G-code program with the 'Open' button.

Then you start the execution with the 'RUN' button, Figure 7.11.

Figure 7.11: The G-code execution control buttons

This will cause EazyCNC to interpret the G-codes line by line and control the motors and axis accordingly.

7.15.2 Pausing the machining

If you need to temporarily pause the execution, for example to clean up some swarf from the work area, you can press the 'HOLD' button.

Note that pausing the machining may slightly change the actual machined toolpath because pausing changes the speed of movements and this in turn may affect how corners are cut.

To continue machining you press the 'RUN' button.

Note that if the spindle is off when you press 'RUN' EazyCNC will issue a warning in the status/error display and beep and NOT commence running. This is to prevent cutter breakage which is sure to

happen if you start machining without the spindle running.

If you get the beep/warning turn on the spindle and press 'RUN' again. Regardless if the spindle is on or off a second press of 'RUN' will always commence running.

You can't move the tool 'manually' with the jog controls while the G-code is executing, but you can move it when the system is in the paused or 'HOLD' state. If you move the tool 'manually' EazyCNC will, when you hit the 'RUN' button, automatically return the tool to the position where it was before you jogged it.

In the hold state the spindle and coolant will keep running if they were 'on' when you paused the machining. You can turn them on/off manually with the respective control buttons, but they will NOT be automatically restored to their original state when you resume machining.

EazyCNC may also enter the hold state when it encounters one of the pause codes M0, M1 or M60.

When EazyCNC encounters the M1 code it only enters the hold state if the M1-pause switch is activated, Figure 7.12.

Figure 7.12: The M1-pause switch

7.15.3 Stepping and Reversing

Sometimes, especially when simulating and examining G-code, you may want to execute the G-code one line at a time. To do that active the 'STEP' button, Figure 7.13.

Figure 7.13: The step and reverse execution control buttons

When the 'STEP' button is active the execution of G-code will automatically enter the pause or 'HOLD' state after executing every line of G-code.

An other use for the 'STEP' feature is in combination with the 'REVERSE' button. In general you can't run G-code backwards because you can't un-machine material back to the work piece or un-flow the coolant, but sometimes you want re-run some cut or G-code line because for example the cutter broke or you had a flameout in plasma cutting in the middle of the movement.

If something like that happens you press the 'HOLD' button to pause the machining. Then you active the 'STEP' and 'REVERSE' buttons and press the 'RUN' button to run backwards as required to get to a position before where your the tool bit broke or the arc flamed out. Don't forget to deactivate 'STEP' and 'REVERSE' afterwards.

Next you stop the spindle to change the cutter and restart the spindle.

Remember to install a kill switch for the spindle/torch and always use it before touching the spindle!

Once you have the cutter changed you can continue machining by hitting the 'RUN' button.

7.15.4 Stopping

The machining will of course automatically stop when it reaches the end of the G-code file or if it encounters a stop code, M2 or M30.

If you hit the 'STOP' button the machining will stop and spindle and coolant will be turned off and the G-code is re-wound to the beginning, so that next time you hit 'RUN' it will execute from the beginning.

7.16 Setting up and managing the coordinate systems

This section discusses the coordinate systems in detail.

7.16.1 Coordinate axes

See Figure 7.14 illustrates the coordinate axes. When standing in front of the machine and looking

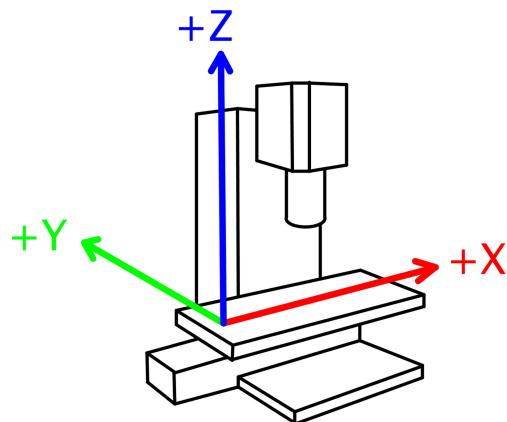


Figure 7.14: The Coordinate axes

into the machine X-axis runs from left to right, Y axis from front to back and Z axis from bottom to top. This is a well established convention in CNC world.

The origin of the machine coordinate system is where ever your home/ref switches are positioned or if you don't have a home/ref switch installed and enabled for an axis then origin is where ever that axis motor is when you press the 'HOME' switch. Note that the machine coordinates are not really relevant except when setting up the limits to protect your machine. The machine coordinates are not used in G-code.

The physical origin of the coordinate axis is not really relevant most of the time as you need to 'calibrate' or set your work coordinate system with respect to the the work piece anyway as explained in the next section.

7.17 XYZ versus ABC axes

EazyCNC supports up to six axes. These are named as X, Y and Z for the obvious cartesian coordinates and A, B and C for remaining rotational axes.

As far as EazyCNC is concerned all axes perform exactly the same, whether it is linear or rotational axes. Only the unit handling is different, for XYZ the units are either in 'mm' or 'inch' depending on G20/G21 mode but for ABC axes the unit is always 'deg' i.e. degrees.

If you use the ABC axes then the toolpath display is not correct as EazyCNC ignores the rotations when it draws the toolpath. In order for EazyCNC to display the toolpath correctly it would have to know the exact physical configuration of your tilting rotary tables or what have you. At this point in time this is not supported in EazyCNC.

If you command both XYZ and ABC axes to move at the same time then all the movements are performed in sync and complete at the same time, however feedrate calculations are probably wrong as the actual physical feedrate depends on the radius at which the cutting tool is relative to the rotating axis and there is no facility in the G-codes to specify that radius.

Therefore it is recommended that you only rotate one axis at a time and calculate the correct F-word for the move manually.

Further, the path tolerance and tool compensation do not make any sense with the rotational axes so you must turn them off manually in your G-code before you make moves involving the rotational axes.

7.17.1 Coordinates in G-codes

G-codes allow you to apply number of 'transformations' to be applied to the coordinates in the G-code file before they are used to position the tool in the coordinate system.

For convenience you can view and change all of them in the the Coordinates screen, see [Figure 7.15](#) But you really should not change them interactively on the screen, these settings belong to the G-code file, except perhaps the work offsets.

For details how these work see the chapter [9](#).

7.17.2 Work/Fixture Coordinate System/Offsets

Work coordinate system, also known as fixture coordinate system or offsets, is the main thing that relates the axes physical positions to the the coordinates displayed in the DROs or the G-codes coordinates.



Figure 7.15: The Coordinates screen.

EazyCNC supports 255 work coordinate systems, you are unlikely to ever need more than a few, most people use only one.

Mathematically a work coordinate system is simply a number for each axis that is added to the DRO or G-code value axis value to convert them to the machine axis position, so basically they offset your coordinates, hence the name.

Changing the coordinate system never moves the tool or axes but it will of course change how much or to where commands move the axes after the coordinate system is changed.

The purpose of the work/fixture coordinate systems is to allow you to set up multiple workpieces and 'calibrate' a separate coordinate system for each and then machine them at one go instead of machining them one by one. Using multiple coordinate system is hardly ever worth the effort in a hobby installation, so I suggested you use coordinate system number one and stick with it.

You manage the coordinate systems with the Work Offsets screen, see Figure 7.16

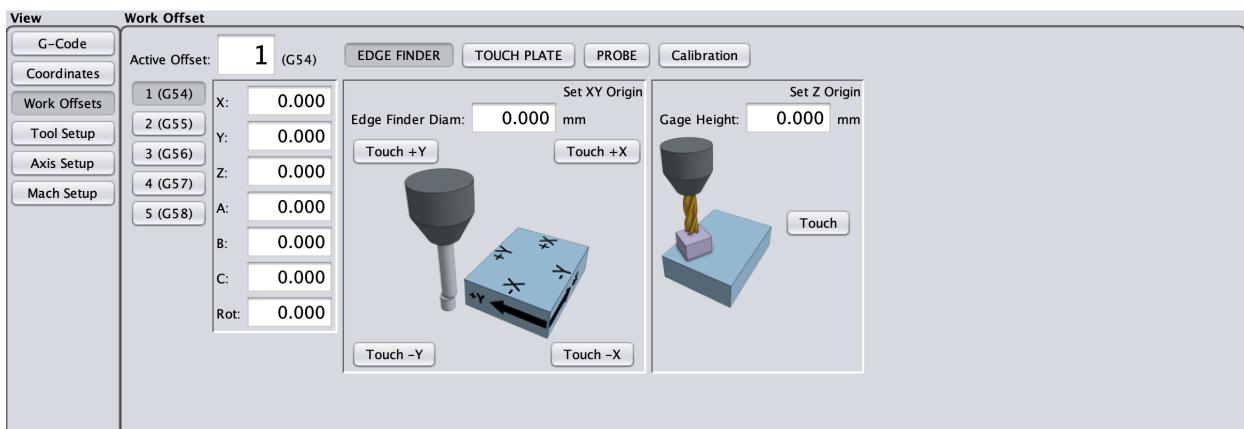


Figure 7.16: The Work Offsets screen in Edge Finder -mode.

7.17.3 Selecting the active coordinate system

At any given time one of the coordinate systems is in effect.

To switch from current coordinate system to an other click on one the buttons labeled with '1 (G54)' etc or type in the number of the coordinate system you want to use into the entry field labeled 'Active Offset'. The coordinate systems are numbered from 1 to 255.

You can also, of course, change the active coordinate system in you G-code. To remind you of this and make the connection in your mind between the coordinate systems and the G-codes the corresponding G-code is shown on the button and to the right of the 'Active Offset' entry field.

7.17.4 Changing offsets/setting up the coordinates

One way to set up the coordinate system was already described in Section 7.10, that is you drive the axis to a know or desired position and set coordinates in the DROs either manually or automatically.

If you do that while you are in the 'Work Offsets' screen you will see how the offsets in the 'X:','Y:'... entry fields change. Or if you feel comfortable working with the offsets directly you can just type them into the entry fields.

A third way to set offsets and to specify the coordinate/axis origin is by 'touching' the work piece with a probe or the cutter in the tool holder.

7.17.5 Setting the XY-coordinate system origin via touching

This is illustrated and done with the controls in the 'Set XY-origin' panel. This feature assumes that you want to set XY origin to edge of the work piece, typically the left/front edge of it.

Usually a special edge finder probe or wobbler tool is held in the chuck while touching because it gives much better sensitivity and accuracy to the touching and does not mark the work piece and neither is likely to break like a cutter would.

To use the touch feature select the edge finder screen by clicking at the "EDGE FINDER" button and then simply Jog the axis to the work piece edge, ensure that the probe diameter is correctly entered into the 'Probe Diameter:' entry field and click on one of the 'Touch' buttons to indicate the edge you have the driven the probe to. EazyCNC then calculates and sets the offsets so that the coordinate origin for that axis is at the indicated edge of the work piece.

7.17.6 Setting the Z-coordinate system origin via touching

This is illustrated and done with the controls in the 'Set Z-origin' panel. This feature assumes that you want to set Z origin to top milling table.

Remember that physically changing the tool or cutter requires you to re-set the Z-axis via any of the methods described here, unless you have a presettable toolholder system and keep the tool table up to date.

As setting the Z-coordinate origin via touching is dependent on the tool or cutter length mounted in the chuck you need to ensure that the correct tool is currently selected and set up as described in the following Section 7.18.

Touching in the Z-direction is usually done with the tool or cutter in the chuck. To use the touch feature you will need a gauge piece about 10 mm or half an inch thick.

Start by jogging down the Z-axis close to the milling table taking care not to actually hit the table with the cutter. Closer than the thickness of the gauge piece is close enough.

Next jog *up*, slowly and carefully, until your gauge piece just fits between the cutter and the table.

Now enter the thickness of your gauge piece into the 'Gauge Thickness:' field and click 'Touch'.

EazyCNC then calculates and sets the Z offset so that the coordinate origin for that axis is at the top of the workpiece.

Note that it is much safer from the tool breakage point of view to jog up i.e. first jog close to the milling table without the gauge piece in place, then jog up a little bit at a time until you can just slide the gauge piece between the table and the cutter.

7.17.7 Using an electronic Probe to Touch

If your system is equipped with an electronic touch probe you can enable the automatic touch feature by checking the 'PROBE' button. See Figure 7.17

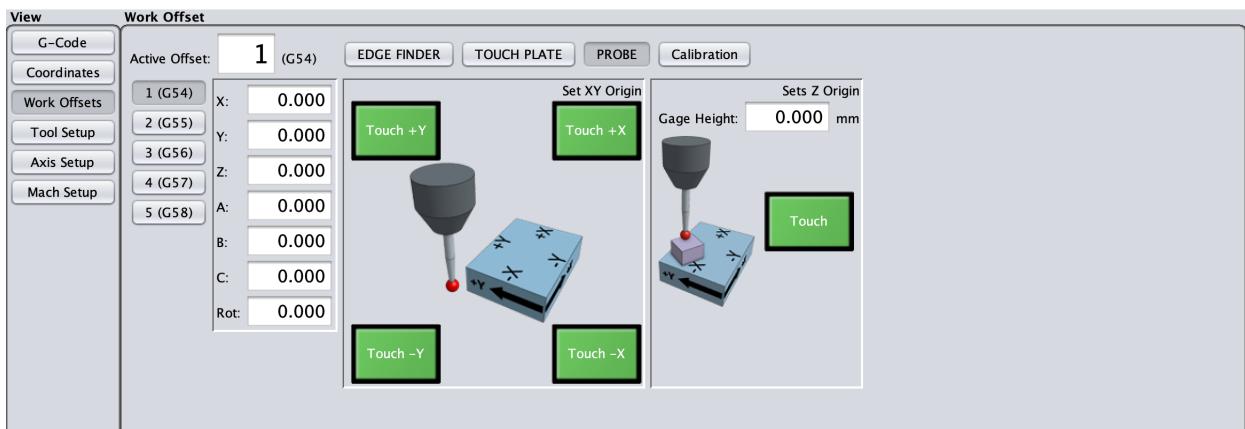


Figure 7.17: The Work Offsets screen in Probe -mode.

First you need to jog the tool close enough to the edge in question of the workpiece using the jog controls.

Pressing one of those green Touch buttons will then cause the machine to make a small (10 mm 1/2 inch) movement on the axis in question. The movement stops as soon as the electronic probe trips and the offset for the corresponding axis is set just like it would be if you had used the manual mode an edge finder or gauge block and pressed the Touch button in the Edge Finder screen.

After the probe trips it retracts to its original position.

If the probe fails to trip then an error is displayed in the status line and no retraction is performed and the Work Offsets are not affected.

7.17.8 Using a touch plate to Touch

If your system is equipped with an touch plate (add figure) you can enable the automatic touch feature by checking the 'TOUCH PLATE' button. See Figure 7.18

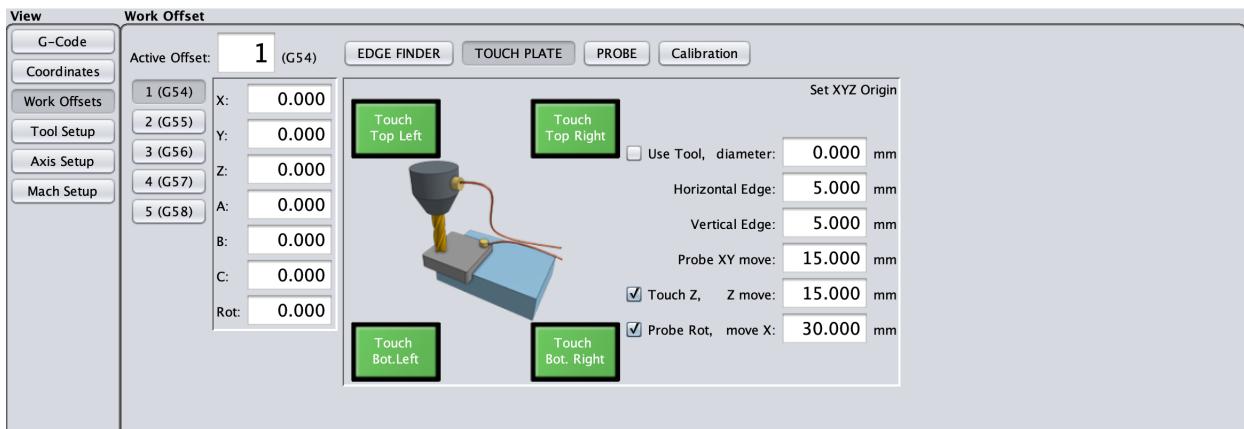


Figure 7.18: The Work Offsets screen in Touch Plate -mode.

Touch plate allows you to set all axes at one go. It optionally allows even calibrating the rotation of the workpiece in the XY plane, meaning that you do not need to align the work piece exactly along the machine XY axis.

To use the touch plate you position it on top of the workpiece with the under hanging flanges touching the work piece X and Y sides.

Then you mount the actual tool in to the chuck.

Then you need to jog the tool close enough above the touch plate and close to the appropriate corner as illustrated in the icon.

Pressing one one of those green Touch buttons will then cause the machine to make a series of moves to measure the touch plate position.

The sequence of moves is as follows.

First the Z direction is probed by moving the tool 'Z move' amount down, this only happens if 'Touch Z' entry field is checked.

Next the X direction is probed by moving the tool left (assuming left side corner is being probe) by the 'XY move' amount and then down by the 'Z move' amount and then to the right until the probe input trips.

Then the tool returns to the starting position and the same series of movements is performed in the Y direction.

Lastly, if the 'Probe Rot' check is checked the tool move moves 'Move X' amount to the right and then along the Y axis towards the work piece until the probe input trips.

Finally the tool returns to the starting position and the XY and optionally Z and Rot values for the current work offset are calculated and set.

The XY offset require that EazyCNC knows the correct tool diameter. This can be entered into the 'diameter' entry field or if the 'Use Tool' checkbox is checked then the value for the current tool is taken from the tool table.

If the probe fails to trip at any point during the operation then an error is displayed in the status line and no retraction is performed and the Work Offsets are not affected.

7.17.9 Probe Calibration

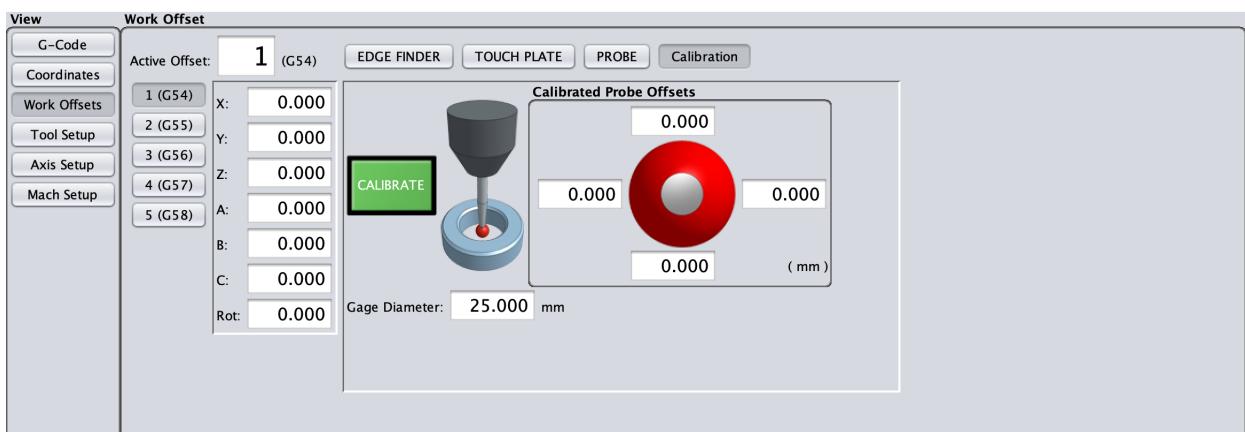


Figure 7.19: The Work Offsets screen in Probe Calibration -mode.

Figure 7.19

For the probing to work correctly EazyCNC needs to know the probe tip size.

If this is known you can just enter the values. However, typically these values are not known because what is required is the 'effective tip size' not the actual tip size. The effective tip size includes the amount of deflection the probe needs to trip. Depending on the design of the probe this can be a relative large amount.

Ideally it does not matter in which rotational orientation the probe is used. Most probe designs allow adjusting the probe mechanically to minimise the probe 'run out'.

However, the probe calibration in EazyCNC can calibrate out the run out if you always use the probe in approximately the same orientation.

To calibrate the probe you a ring gauge of known internal diameter.

You enter that diameter into the 'Gage Diameter' field.

Then you jog the probe tip into the inside of the ring gauge, note that in the Z direction the tip needs to be below the top surface of the gauge. In the XY direction aim to approximately to the center of the ring.

Before you start you need to orient rotation wise the probe as you plan to use it every time you use it.

Then press the 'CALIBRATE' button and follow the instructions on the screen.

EazyCNC will make a serial moves to establish the center of the gauge and then measure the effective tip size based on the move lengths it takes to trip the probe and the given gauge diameter.

Then EazyCNC asks you to rotate the probe 180° degrees and the same series of moves is performed.

Finally EazyCNC calculates the Probe Offsets for each side of the probe tip. Ideally all values would be close to each other. The effective tool tip diameter is the sum of the offset in given direction.

If you know the effective tip diameter you can just divide that by two and enter the value manually to each of the 'Probe Offsets' entry fields.

If your probe has no runout, you can calibrate without turning the probe 180°, but you still need to go through that step.

7.18 Setting up and managing tool information

Certain features of EazyCNC rely on correct information of the tool i.e. the cutter diameter and length. To help you to manage this EazyCNC maintains a table of tool information for up to 256 tools.

You manage the tool table with the Tool Setup screen, see [Figure 7.20](#)

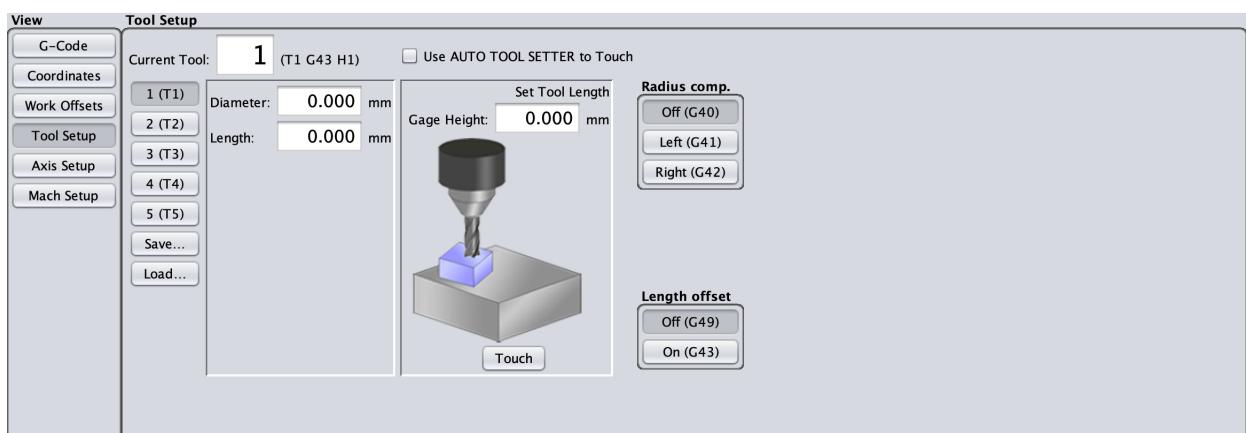


Figure 7.20: The Tool Setup screen.

The tool dimension are used in movement limit calculations and if they are not correct you may either

move bang against the end of an axis movement or EazyCNC may not allow you to move the tool. This applies to both manual jogging and running G-code programs.

The tool diameter is also used in the cutter compensation calculations, and it can take advantage of the tool diameter information in the tool table or you can manage that in the G-code.

Keeping the tool information in the tool table has the advantage that the tool information can be kept up to date without touching the G-code files as cutters wear or are changed, but for some types of machines like plasma cutters where the width of the cut depends on the feed rate it maybe better managed in the G-code files themselves.

To effectively use the tool table you need a presettable toolholder system that allows you to repeatably change the tool without affecting the cutter position i.e. a system that allows you to take a tool out and put it back in later and which keeps the tool at the same height in relation to the mill spindle.

If you don't have a toolholder like that you can just set the cutter manually, hopefully with a jig or something, to a correct correct depth in the chuck and update the tool length in the table manually. With this method, as the length info is probably not accurate, you need to re-set the Z-axis coordinate system every time you change the tool.

You may also decide that keeping the tool length information correct in the tool table is too much work in which case you can just set the tool length to zero in the tool table, re-set the Z-coordinates as needed and disable the Z-axis limits, see Section [6.8.2](#).

You also don't have to maintain the tool diameter as this can be handled in the G-code. If you find keeping the tool diameter correct in the tool table too much work then just set it zero and disable the XY-axis limits.

7.18.1 Setting the current tool

To set which tool in the tool table is in use, shown and manipulated on the screen click on one the buttons labeled with '1 (T1)' etc or type in a number you want to use into the entry field labeled 'Current Tool'. The tools are numbered from 1 to 256.

You can also set the current tool in you G-code program with the 'T' word. To remind you of this and make the connection in your mind between the tool table entries and the G-codes the corresponding T-word is shown on the button and to the right of the 'Current Tool' entry field.

Note that EazyCNC relies on you to keep the physical world and the software in sync. Just changing the tool number in you G-code program with the 'T' is not enough, you actually have to physically change the tool. To be able to do that you need to stop the spindle and pause the G-code execution by adding following sequence to you program.

```
M5 ; Spindle off
T 5 ; Select tool 5
M0 (MSG Load tool 5) ; Pause with a message to the operator
```

When EazyCNC encounters above sequence it sets the current tool to 5 and pauses i.e. enters the 'HOLD' state, allowing you to change the tool after which you hit 'RUN'.

Don't forget to wait for the spindle to stop and use the kill switch before touching the spindle!

If you change the tool length or diameter in the tool table when you change the tool those updated length and diameter values are *not* automatically used. Instead you need to click one of the G40,G41,G42,G43 and G49 buttons as needed if you update the tool table during machining.

7.18.2 Managing the tool diameter and length

To set or examine a tool table entry for a tool first set it as the current tool and then view or type in the tool diameter and length in the 'Diameter:' and 'Length:' fields.

You can also update the tooltable in your G-code program with G10 L1 Ptoolno Z radius X length command; you could for example have a G-code program that updates all of your tool table.

7.18.3 Setting the tool length via touching

This is illustrated and done with the controls in the 'Set Tool Length' panel.

This feature expects that you have set your Z-coordinate system correctly, which may sound sound a bit odd as setting the Z-coordinates system via touching requires that the tool height is correct!

The way around this problem is designate one tool, (usually number 1) as the reference tool and enter the length of that tool manually. The actual 'length' entered for that tool is immaterial as the other tool lengths will just be relative to that length. So before setting the other tool lengths select tool 1, put the reference tool into the spindle/chuck and using a gauge block set the Z axis to zero as explained in the Section [7.17.6](#)

Don't forget that all this is hardly worth the trouble if you do not have a re-settable toolholder, otherwise you can just always re-set the Z-axis and be done with it.

To set the tool length via touching you need a gauge piece of known thickness. The thickness is not important but about 10 mm or half an inch is good.

First enter the correct tool number into the 'Current Tool' entry field and then mount the corresponding cutter into the spindle. Then jog down the Z-axis close to the milling table taking care not to actually hit the table with the cutter. Closer than the thickness of the gauge piece is close enough.

Next jog *up*, slowly and carefully, until your gauge piece just fits between the cutter and the table.

Now enter the thickness of your gauge piece into the 'Gauge Thickness:' field and click 'Touch'.

EazyCNC then calculates and sets the Tool Length.

7.18.4 Using an Automatic Tool Setter

If your system is equipped with an electronic Automatic Toolsetter you can enable the automatic touch feature by checking the 'Use AUTO TOOL SETTER to Touch' check box.

As a safety feature if the 'Use AUTO TOOL SETTER to Touch' feature is enabled then the Touch button is changed to look like in Figure 7.21

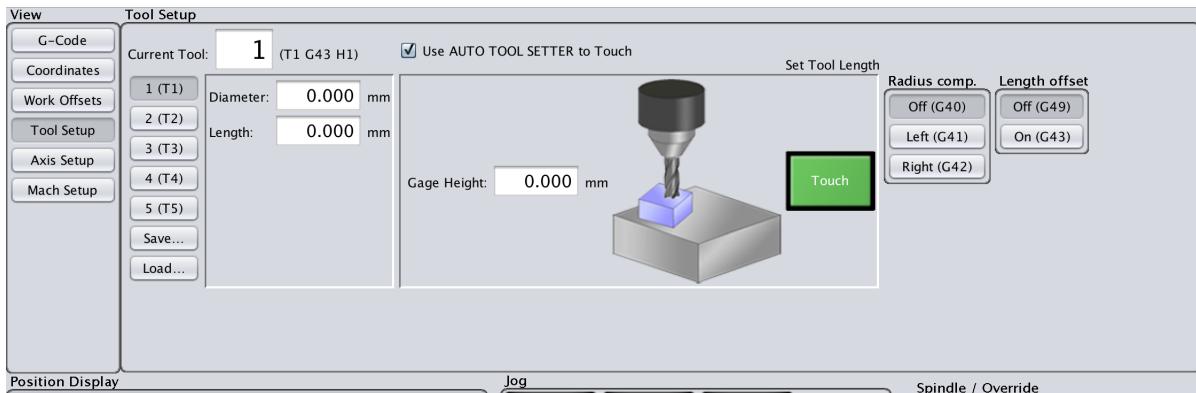


Figure 7.21: The Tool Setup screen when the 'Use PROBE to Touch' is enabled.

First you need to jog the tool close enough to top of the gauge block using the jog controls.

Pressing the green Touch button will then cause the machine to make a small (10 mm 1/2 inch) movement on Z axis. The movement stops as soon as the electronic Automatic Tool Setter trips and the length for the corresponding tool is set just like it would be if you had used the manual mode pressed the Touch button after sneaking up to the gauge block with the jog controls.

After the setter trips the tool retracts to its original position.

If the setter fails to trip then an error is displayed in the status line and no retraction is performed and the Tool Length is not affected.

7.18.5 Editing tool setup in a spreadsheet

Some people find it more convenient to edit the tool table in a spreadsheet or text editor program.

For this purpose this screen contains the Load and Save buttons that allow you to import / export the tool settings (which are stored in the EazyCNC configuration file) to/from a text file.

The details of the text file format can be setup in the Export/Import settings screen, see section 6.6.15.

Save... -button

Clicking this button allows you to save the whole tool table to a text file you specify in the dialog the file dialog that appears when you click the button.

Load... -button

Clicking this button allows you to load the whole tool table from a text file you specify in the dialog the file dialog that appears when you click the button.

7.19 User Functions

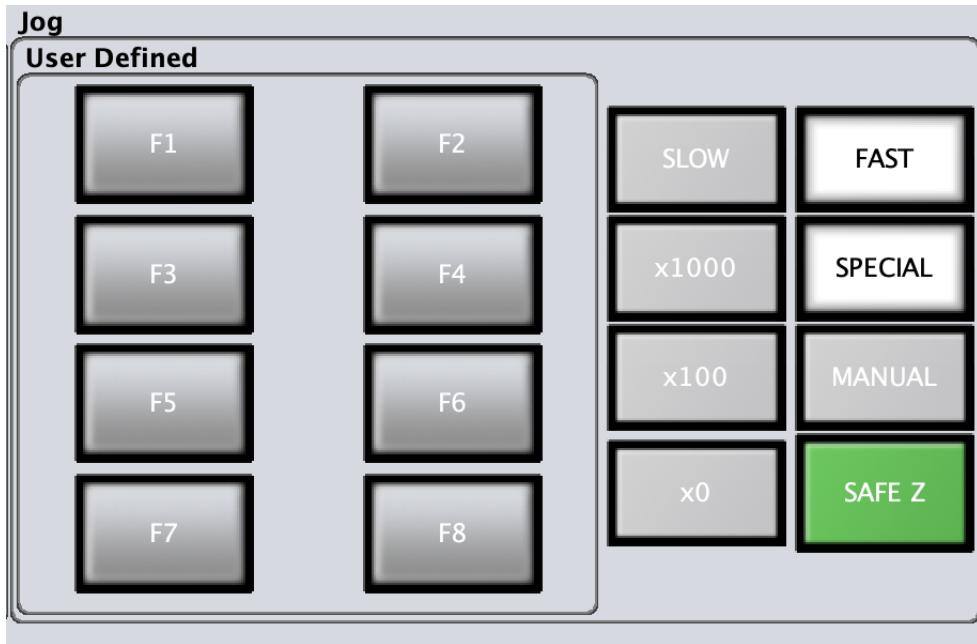


Figure 7.22: The User Function buttons

EazyCNC allows you to define the function of some of the buttons in the user interface.

These buttons are located immediately below the axis DROs and in the jog buttons area. To access the later you need to press the SPECIAL key.

To use a button you will first need to associate a text file with that button.

To do that you press and hold that button until a file dialog appears and then you can browse/point to the file you want to associate with that button.

You can associate several kinds of files with a button. Which type of execution EazyCNC tries to perform when you press the button depends on the file extension of that file.

Don't forget to press SAVE to make your changes permanent!

If the file name ends with '.java' then EazyCNC tries to compile that file and execute the resulting bytecode in the Java Virtual Machine.

If the file name ends with '.BAT' then EazyCNC asks the operating system (Windows) to execute that file as if you had typed that name at the DOSBox.

If the file name ends with '.sh' then EazyCNC asks the operating system (MacOS/Linux) to execute

that file as if you had typed that name at the terminal window.

If none of the above applies then EazyCNC tries to execute that file as a G-code file i.e. behind the scenes it does the same as if you pressed LOAD and RUN for that file.

All of the above file formats are basically just text files and support adding comments them.

When you associate a file with a button EazyCNC scans the file for comments and recognizes a few special comments that have no significance to the execution of that file but which can and should be used to configure the button.

EazyCNC recognizes lines that begin as follows as comments:

';' for use in G-code files,
'#' for use in shell scripts,
'REM' for use in .BAT files and
'//' for use in .java files.

If a comment line begins with 'button = sometext' then EazyCNC will use that 'sometext' as the text to be displayed inside that button. If you want to have two or more lines of text in the button you can use the '
' marker to mark the line break in the text.

If a comment line begins with 'key = keyname' then EazyCNC will associate that button with that keyboard key and execute that file when you press that keyboard key. Joystick and MPG pendant keys can be used as well.

7.19.1 Built-in User Functions

EazyCNC has number of built-in user functions.

You can find them in ' /EazyCNC/plugins/builtin/com/eazycnc/builtin' if you want to use them as example or starting point for your own functions. Note that you should not edit them as EazyCNC will overwrite your changes on every launch of the application. Instead make a copy of any of them with a different file name and assign that file to a button.

As an example the ZERO ALL button is implemented as a G-code text file stored into the file 'ZeroAll.txt' :

```
; button = ZERO\nALL
G54
G10 L20 P1 X0 Y0 Z0 A0 B0 C0
```

and the HOME ALL button is defined by the following Java code stored in the file RefAllHome.java:

```
// button = HOME\nALL

package com.eazycnc.builtin;
import com.eazycnc.plugin.*;
import com.eazycnc.uwk.widgets.*;

public class RefAllHome extends Plugin {
    @Override
    public void onAction(Button button) {
        EazyCNC.doHomeAction(button,0,1,2);
    }
}
```

Note that ZERO all zeros all six axes X,Y,Z,A,B and C but HOME ALL homes only X,Y and Z axes.

Chapter 8

Cutter compensation

G-codes specify the cutter or tool movement with coordinates. These coordinates specify the position of the spindle of the milling machine. Because the cutter of the milling has a non negligible size they do *not* specify the size and shape of the part you are cutting. It is the job a CAM software post processors software to turn CAD models into toolpaths that accommodate for the diameter and length of the cutter.

However G-codes specify and EazyCNC supports limited automatic cutter length and diameter compensation so that you can use the *coordinates of the part* to be machined instead of the coordinates of the spindle.

These can be useful with hand written G-code programs and with some special machine configurations such as plasma cutters and when working mainly in plane i.e. two dimensions.

8.1 Tool length compensation

Tool length compensation is rather simple to understand, basically it just moves the machine higher by the length of the tool. So when the G-codes specify for example Z 200 and the current tool length compensation is turned on (with G43 code) and the tool length for the current tool (set with the T word) is 50 the actually Z coordinate the machine moves to is 250.

8.2 Cutter diameter compensation

Cutter diameter compensation is not difficult to understand but there are more details to consider.

Basically if you use the diameter compensation you put the coordinates of the part your are machining in to your G-code program and when you turn on the compensation you tell EazyCNC on which side of the path you want the tool travel. The side of course depends on weather you are cutting an opening or an outline of the path and weather you are traveling the path clockwise or counter clockwise.

The cutter compensation cannot change the past, what is cut is cut, so when you turn on the compensation (G41 for left and G42 for right) the compensation will only have an effect the next move.

Therefore you need pay attention to the first move when you are planning your tool path and you need to pre-position (usually with G0 code) the tool outside of the part by at least half the tool diameter. Also consider the direction this first move-in cut will make, ideally this should be in the same direction as the first actual part outline to be cut, but for inside holes or openings this is not always possible.

8.2.1 Cutter compensation example - cutting part's outline

To get a more concrete picture of above please study the following example G-code and the the Figure 8.1 which illustrates various aspects of the diameter compensation process.

```
N1 G40      ; make sure diameter compensation is off
N2 G0 X2 Y1 ; move to our starting position
N3 G42 P0.4 ; turn on compensation to the right for 0.8 unit tool diameter
N4 G1 X3 Y2 ; first move, from starting point to part perimeter
N5 G1 X8 Y2 ; cut the lower edge
N6 G1 X8 Y6 ; cut the right side
N7 G1 X3 Y3 ; cut the slanted top edge
N8 G1 X3 Y2 ; and finally back to where we started cutting the left edge
N9 G40      ; compensation is off
```

Referring to the Figure 8.1 the black line illustrates the uncompensated coordinate path i.e. the coordinates in the G-code file. The green lines illustrates the path of the center of the tool and the compensated coordinates. And finally the red line illustrates the left edge of the groove the cutter actually cuts, i.e. this is the actual outline of the part we are making here, so any deviation between the black and red line (except for the initial move-in movement) is a indication of badly constructed G-code program.

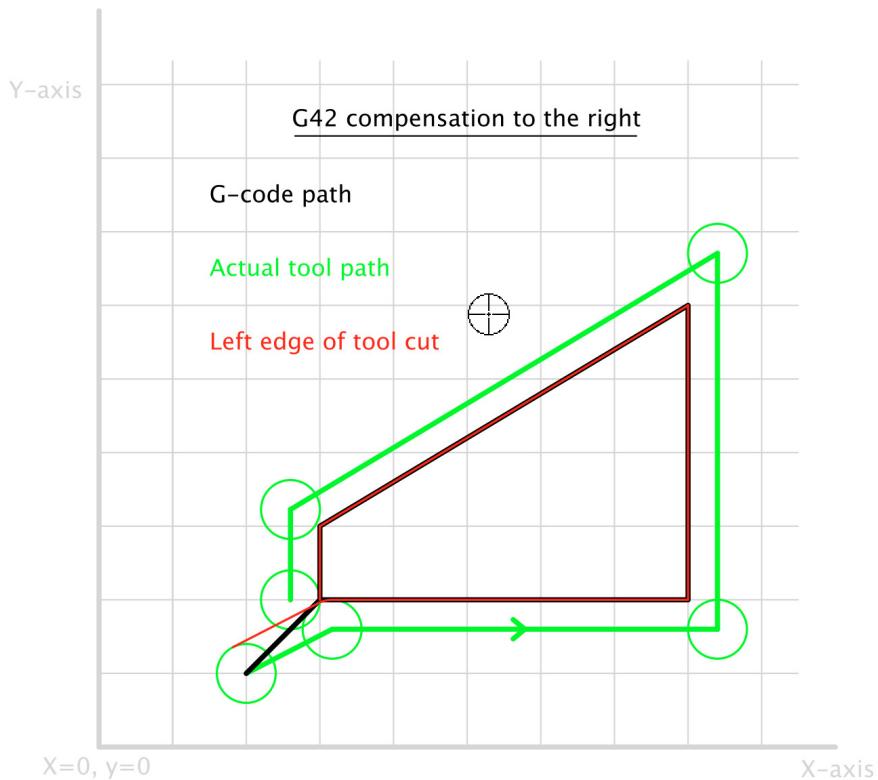


Figure 8.1: G-code path versus compensated cutter path

Overall the part outline and the cut path seem to match but if you look carefully in the blown up detail of the beginning of the cut in Figure 8.2 you see that cutting the path as specified would leave a semi circular concave notch to the part and besides, at least in theory, the part would be left hanging by a thread as the loop is not completed. These problems come from the first two actual moves (lines N2,N4 and N4) which are not parallel.

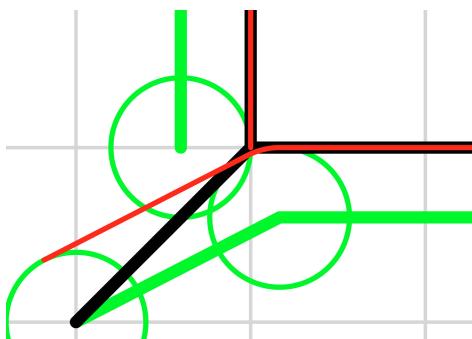


Figure 8.2: Cutter compensation detail

8.2.2 Cutter compensation example - cutting holes and openings

To illustrate cutting a hole or cutout to match the above part we can just set compensation to the left and move the starting point to the inside of the path. Following G-code does just that, the actual path is identical to the previous example only the compensation side and starting point are different. The starting point was deliberately chosen badly and the cutter is way oversize relative to the path dimensions to exaggerate the issues you may encounter when designing your paths.

```

N1 G40      ; make sure diameter compensation is off
N2 G0 X5 Y3 ; move to our starting position
N3 G41 P0.4 ; turn on compensation to the left for 0.8 unit tool diameter
N4 G1 X3 Y2 ; first move, from starting point to part perimeter
N5 G1 X8 Y2 ; cut the lower edge
N6 G1 X8 Y6 ; cut the right side
N7 G1 X3 Y3 ; cut the slanted top edge
N8 G1 X3 Y2 ; and finally back to where we started cutting the left edge
N9 G40      ; compensation is off

```

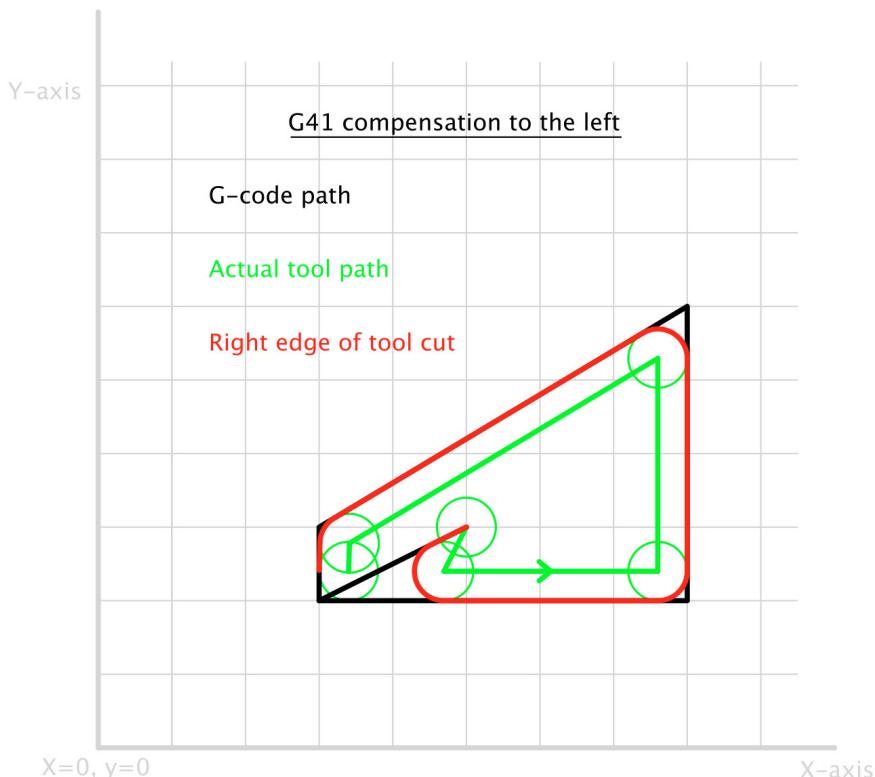


Figure 8.3: G-code path versus compensated cutter path

Chapter 9

G-code reference

G-code is ancient by computer standards, you can trace it's roots back to MIT labs in the 1950s. Wikipedia describes G-code as "a language in which people tell computerised machine tools what to make and how to make it".

Today this is not actually a good description. Rather today G-code is the standard by which computer aided design and manufacturing programs, CAD/CAM software, communicate the machining instructions to CNC machines.

There is a EIA standard from year 1980 called RS274D that sort of defines the G-codes but over the years manufacturers have extended and interpreted it differently so that today there are many dialects.

EazyCNC tries to support a common subset of what the two most common hobby CNC controller programs, EMC2 and Mach3 support.

G-code should not be written by hand, instead a CAD/CAM program should be used to generate it. Not only is this a lot faster but it also reduces the chances of errors and improves the quality of machining as the CAD/CAM program has a much better understanding of the machining process as a whole than the CNC machine ever can.

CAM software actually produces a very simple, 'pidgin English' kind of G-code which is rather universal in order to be avoid the differences between machines. Different interpretation for some of the G-codes can be configure in the Mach Setup screen, see Section [6.6.1](#).

Therefore it is not really important to learn to write G-code, but it is handy to be able to read it to some extent and this is what this chapter tries teach you to do.

9.1 The Basics

G-codes programs are text files made of lines of commands for the CNC machine. The file names often have the file extension '.nc' but this is by no means required, you can use '.txt' as well.

EazyCNC reads the program line by line executing the commands.

The commands are made of single letter 'words' possibly followed by number, for example 'G0' or

'X1000'.

The words can be written in upper or lower case letters. Any number of 'space' characters can be placed anywhere on each line to improve readability; they are ignored and make no difference to the execution.

In this document a hashtag, '#' after a word is used to denote a word followed by a value, i.e. number or expression. These are optional arguments or parameters to the G-code in question. For example 'G0 X# Y# Z#' indicates that you can write 'G0 X10 Y20'. Whether parameters are optional or not is explained in the text. A asterisk '*' is used to denote a compulsory or required word.

Comments to the human reader i.e. text that EazyCNC will not try to interpret as command can be placed on lines if preceded with a semicolon ';' or enclosed in parentheses, '(' and ')'.

Everything on after a semicolon ';' on a line is also treated as a comment.

The order of words on a line makes no difference.

No word or G-code can appear more than once on any given line.

Some G-codes are actually M-codes!

Line numbers are optional and effectively ignored but if you want you can use line numbers. Line numbers are expressed as the 'L' word followed by up to five digits.

9.1.1 Operator Messages

Everything after the comma ',' in a comment that starts with '(MSG,' is display as message to the operator in the status display, Figure Figure 7.3.

9.1.2 Debug Messages

Everything after the comma ',' in a comment that starts with '(PRINT,' is output to the Java console. This can be very handy when debugging G-code programs. When outputting text to the console #number -references in the text are replaced with value of the parameter with that number.

For example

(PRINT,value of parameter 123 is #123)

will output the value of parameter 123 into the console.

9.2 Numbers, Expressions and Parameters

9.2.1 Numbers

Numbers in commands are expressed as one or more digits, optionally followed by a decimal point and one or more digits. A number can optionally be preceded with a plus or minus sign.

It is also acceptable to leave out a zero preceding the decimal point.

Some valid examples:

7 3.1415 -2.0 .1

9.2.2 Expressions

Where ever a number can be used an arithmetic enclosed expression in brackets, '[' and ']', can be used.

For example the commands

X100

and

X [50 + 70]

are equivalent.

Arithmetic operators

Nine common arithmetic operations are supported.

The operations are divided to three groups and denoted as follows. Operations in a higher precedence group are executed before those with lower precedence. Operators in the same precedence level are executed from left to right. This pretty much follows the common arithmetic expression calculation order.

The highest precedence group only has the exponentiation or power operator '**'.

The second highest precedence contains the multiplication, division and modulus operators '*', '/' and 'MOD' respectively.

The lowest precedence is for addition, subtraction, i.e. '+' and '-', and the logical operators 'AND', 'OR' and 'XOR' aka exclusive or.

The logical operators work on numbers interpreting any non zero number as logical one or true value.

The order of operations can be altered by enclosing the sub expression in square brackets ('[']'), do

not use parentheses ('(' ')').

Arithmetic functions

Arithmetic expressions support a number of common arithmetic functions. See table Table 9.1.

Table 9.1: Mathematical functions

Operator	Function
ABS	absolute value
ROUND	round to nearest integer
FIX	round down to previous integer
FUP	round up to next integer
COS	cosine function
SIN	sine function
TAN	tangent function
ACOS	arcus cosine function
ASIN	arcus sine function
SQRT	square root function
EXP	e to the 'power of' function
LN	natural logarithm function

A function is expressed as the name of the function followed by the function argument enclosed in brackets, '[' and ']'.

For example calculate the square root of two you would write:

SQRT[2]

Note that for some weird historical reason one function, ATAN, has an exceptional format, to write the equivalent of

$\arctan(123/456)$

you need to write

ATAN[123] / [456]

9.2.3 Parameters

Parameters are what most programming languages would call variables i.e. they are storage locations for values which can be used in place of numbers in expression.

Instead of names the parameters are referred to by numbers preceded with a '#' sign.

For example

#5324

Some parameters have a special meaning, others you are free to use as you wish to make your code more useful.

You can for example create G-code programs that is parametrized to cut different sized parts by just changing a parameter or two.

To change or set a parameter you follow the parameter name with the equal sign '='. For example:

```
#5324 = 12.34
```

It is possible to both set and refer to the value of a parameter, even several times, on the same line. The parameter values are only assigned or set once the whole line has been executed. If a parameter is assigned several times on a line the last one will take effect.

So for example after executing following lines:

```
#22=5 #22=[#22+1] #23=#22 #22=[#22-1]
```

the parameter 22 has value 4 and parameter #23 has value 5.

Note that the number following the '#' sign can itself be an expression which makes for some interesting possibilities, you can for example use it to index parameter to simulate what most program languages would call arrays.

9.3 G-codes and M-codes

9.3.1 Length Units, G20,G21 codes

Coordinates i.e. positions or distances in G-codes are expressed in either millimetres or inches.

The G20 code tells EazyCNC that following coordinates and lengths are in inches, G21 tells it that they are in millimeters.

It is recommended that no coordinates or length are specified on the same line as G20 or G21 code is used.

9.3.2 Coordinate Axes

G-code specifies the movement of the machining tool using orthogonal Cartesian coordinates. (There is also polar coordinate mode, see G-codes G15 and G16.)

The coordinate system follows the right-hand rule with the positive X-axis pointing to right, Y-axis away from the operator and Z-axis pointing up, so values increase from left to right, front to back, and bottom to top, as illustrated in Figure 9.1.

Figure 9.1: Coordinate axes of a 3-axis CNC System

9.3.3 Setting the length units – G20,G21

G-codes specify the length and any related physical quantities like feedrate in either metric or imperial units. For the metric system the basic unit is one millimeter and for the imperial system it is one inch. It is possible but not recommended to mix the units in a single G-code program, but it is perfectly feasible machine 'metric' G-code programs in a machine configure for imperial units as long as the program contains the proper G-code to set the length units.

The G20 sets the imperial (inch) units mode and G21 sets the metric (mm) units mode.

It is an error to have botn G20 and G21 on the same line.

9.3.4 Feedrate – F-word

The F-word sets the current feedrate for all the other movement commands than G0 which is always performed at maximum speed.

Depending on the length units mode in effect the F-word value specifies the feedrate either in inches per minute or millimeters per minute.

It is an error if the feedrate is not a positive number.

9.3.5 Spindle speed – S-word

The S-word value sets the current spindle speed in rotations per minute (rpm).

It is ok to specify a larger rpm value than what is set up for the system, see Section 6.7.2, but of course the spindle can't run faster than it's maximum speed.

Setting the spindle speed does *not* turn on the spindle, you need to program M3 or M4 to turn on the spindle.

Note that the speed change can take several seconds to take effect so a dwell or G4 code should be programmed right after a spindle speed change.

Also note that specifying zero speed does not guarantee that the spindle stops, on the contrary it is most likely to remain turning at some low speed. To stop the spindle use the M5 command.

Remember never to touch the spindle unless the kill switch has been applied!

It is an error if the value is not a positive number or zero.

9.3.6 Spindle on/off – M3,M4,M5 codes

The M3 code turns on the spindle in the clockwise a.k.a. forward direction direction.

The M4 code turns on the spindle in the counter clockwise a.k.a. reverse direction direction.

Note that reverse running the spindle can be dangerous if the chuck (in a lathe) is screw mounted and of course trying to machine with reverse running cutter will only damage the cutter and ruin the workpiece.

The M5 code turns off the spindle.

Note that the turning the spindle on/off can take several seconds to actually take place so a dwell or G4 code should be programmed right after commanding the spindle on or off.

Also note that depending on your spindle drive system abruptly changing directions can damage the equipment or be dangerous.

It is an error if more than one of M4,M5 or M6 is programmed on the same line.

9.3.7 Coolant on/off – M7,M8,M9 codes

The M7 (mist cooling) and M8 (flood cooling) codes both turn on the coolant and mist/flood aspect of the codes is ignored.

The M9 code turns off cooling.

Note that when turning coolant on it can take several seconds for the coolant pump to react so you may want to program a dwell or G4 right after turning the coolant on.

It is an error if more than one of M7,M8 or M9 is programmed on the same line.

9.3.8 Select a tool – T-word

The T-word designates a tooltable entry as the current tool. Note that this alone does *not* do anything else.

To physically change the tool you need to program a pause M0 and change the tool yourself and to use the tool length you need to use the G43 command and to use the tool diameter info you need to program G40 or G41 as needed.

It is an error if the value is not a positive or is larger than the number of tools supported by EazyCNC.

9.3.9 Dwelling – G44-code

The G4-word causes EazyCNC to wait for the specified time before executing the next G-code program line, this is useful for example after turning on or changing the spindle speed.

The wait time is specified with the P-word in either seconds or milliseconds depending on which G-code interpretation options has been selected, see Section 6.6.1. If a G-code program seems to hang for a long time then probably that setting for the P-word interpretation is wrong.

It is an error if the value is not a positive or zero.

9.3.10 Coordinates/moving axes – XYZABC -words

Coordinates in G-code programs are expressed as an axis letter, see followed by the coordinate position either as a number or as an expression enclosed in brackets.

The presence of an axis letter in a G-code line is an implicit command for the named axis to move.

The movement is carried out in the current motion mode either G0,G1,G2 or G3. This allows for more compact representation of the toolpath as most of a G-code program will be just a long list of coordinates to move the tool.

Axis letter names the axis that will move, valid letters are 'X','Y','Z','A','B','C'.

If an axis does not need to move on a given line it is not necessary to specify the axis and its position at all.

The axis movements are co-ordinated so that the movements start and stop at the same time and the axis speeds are such that the tool will move at the specified rate.

Here is an example that will cause X and Y axis to move to the position 120,140 in current motion mode:

```
X 120.0 Y [100.0+40.0]
```

It is an error if the same axis word appears twice any given line.

Note that actual axis movements are subject to machine limits acceleration limits and if the best speed mode (G64) is enabled then the movements may 'cut corners'.

Also note that the coordinates specified with the axis words maybe scaled, offset and even rotated, see XXX

9.3.11 Motion mode – G0,G1,G2 and G3 codes

As describe above specifying coordinates with axis words causes EazyCNC to move the axis according to the current motion mode.

The G0,G1,G2 and G3 codes are used to specify the current motion mode, which will stay in effect until and other motion mode is specified.

If the motion mode is explicitly specified with one of the above G-codes, then at least one axis word needs to be specified on the same line.

It is an error to specify more than one motion mode in a single line.

It is an error to specify a motion mode without any axis words.

9.3.12 Rapid positioning – G0 code

Rapid positioning will move the specified axes in co-ordinated fashion as fast as possible i.e. at the Max Velocity set up in the Mach Setup, see YYY.

G0 is used to rapidly position the tool for the beginning of a cut and is not meant for machining.

9.3.13 Linear interpolation – G1 code

For some archaic reason the machining G-codes are called interpolations.

G1 is used to tell EazyCNC to move the tool at the current feedrate to the given position. This is the 'work horse' mode of all G-codes, most machining will take place in this mode.

9.3.14 Clockwise Arc interpolation – G2 code

G2 is used to tell EazyCNC to move the tool at the current feedrate from its current position to the given position following a circular arc path clockwise on the active plane as set by the G17 (XY-plane), G18 (XZ-plane) or G19 (YZ-plane).

Clockwise means as if you were looking down at the arc on the active plane from the third axis i.e. if your are cutting in the XY plane and looking down at it from the positive Z axis.

The end point of the arc is specified with the 'X', 'Y', 'Z' words. It is acceptable to leave out axes which do not need to move, for example typically if you are cutting an arc in the XY plane then you don't specify the 'Z' coordinate.

If a movement in the direction perpendicular to the current plane is specified then the tool will actually follow a three dimensional helical path.

The curvature of the arc is specified either by giving the centre point of the arc or by specifying it's radius.

Specifying arc using center point

G2 X# Y# Z# I# J# K# specifies the arc curvature using the radius method.

The center point is specified with the 'I' and 'J' and 'K' words for the coordinates in the X,Y and Z planes respectively. The the IJK words specify the center coordinates relative to the starting point of the arc or as coordinates in the current coordinate system.

Which interpretation is used depends on the machine setup see Section 6.6.2 or G-codes G90.1 and G91.1 see Section 9.4.18.

If your toolpath preview shows large arcs that don't make sense then it is likely that the interpretation mode of the IJK words is wrong.

It is acceptable to omit any of the any but not all of the end point words (XYZ) and center point words (IJK) in which case the last specified word values are used.

Note that by specifying the start,end and center point of the arc you are over specifying the arc, this may result in an error message if the distance from the start point to the center differs too much from the distance from the end point to the center.

Specifying arc using radius

`G2 X# Y# Z# R#` specifies the arc curvature using the radius method.

If the center point method of specifying the arc curvature is not used then radius of the arc must be specified with the 'R' word. The start and end points alone do not specify an unambiguous arc, mathematically for any two points and radius there are two arcs that connect the end points, one arc is less than 180° and the other is larger.

If the radius specified with the 'R' word is positive then this is interpreted as the arc that turn less than 180° and if the radius is negative then it is interpreted to mean the arc that makes the longer turn and the absolute value of the 'R' word is used as the radius.

Do not try to cut full or nearly full circles with this method as this makes the start and endpoints very nearly the same which means that any roundoff error in the calculations has large effect in the internal arc center point calculation.

9.3.15 Counter Clockwise Arc interpolation – G3 code

The G3 command performs the same as G2 but the arc is 'drawn' counter clockwise.

9.3.16 Perform probing move – G31

The probing command 'G31' works the same as the 'G1' in other words it programs a linear movement at current feedrate, except that this command must always be explicitly specified on a line and does not 'carry over' from line to line like the modal 'G1'.

If the probe input becomes activated during the movement the movement is stopped as soon as feasible without losing any steps and the parameters DRO values at which the probe became active are copied to the parameters 2000-2005.

Note that it is important that the feedrate is low enough because the probe movement will overshoot the position at which the probe trips/triggers by an amount that depends on the feedrate and it is equally important that the probe design allows for the overshoot, otherwise the probe and/or workpiece can be damaged.

9.3.17 Pause Machining – M0,M1

The command 'M0' pauses the execution of G-codes and puts the system into the HOLD-state.

The 'M1' works the same way except it only pauses if the M1-switch on the user interface is activated, see Figure 7.12.

9.3.18 Stop Machining – M2

The command 'M2' stops the execution of G-codes and puts the system into the STOP-state.

9.4 Coordinate systems

As said in Section 9.3.10, the coordinates are specified using the axis words 'X','Y','Z', 'A','B','C' and 'I','J','K' for the arc centers in G2 and G3 commands.

This is not the end of the story though.

G-codes provide number of ways to transform the axis word values before they become final physical positions of the CNC machine axes.

This section provides the nitty gritty details.

Table 9.2 lists, in order of application, all the coordinate transformations every axis word value goes through.

If the absolute mode G53 is active then none of the offsets or the rotation is applied.

Table 9.2: Coordinate transformations

Apply G51 Scaling
If in G91 mode interpret words as incremental coordinates
If in G16 mode interpret words as polar coordinates
Apply G52 temporary coordinate offsets
Apply G68 rotation
Apply G44 tool length offset
Apply G54 work/fixture offsets

9.4.1 Scaling – G50,G51 codes

G50 turns off scaling and sets scale factors for all axis words to 1.

G51 X Y# Z# A# B# C# turns on scaling and specifies the scaling factor for the given axes. The scale factors for axes that are not specified remain at their previous values.

The purpose of scaling is to scale the part being cut and thus it is the first operation to be applied to coordinates and so it will not affect position of the part on the workpiece which is set by the fixture offsets nor does it affect the tool length or temporary offsets.

For example following will scale a 2D part design to three times it's original size.

```
G50      ; ensure all scaling is off and set to 1.0
G51 X3 Y3 ; scale 2D design by three
```

It is an error to have both G50 and G51 on the same line.

9.4.2 Incremental mode – G90,G91 codes

G91 turns on incremental coordinate mode. In incremental model all axis words are interpreted relative to the current to position tool position.

For example following

```
G91      ; turn on incremental mode
G1 X100 ; mill hundred units to the right
Y50      ; hundred units forward
X-100    ; back to start X coordinate
Y-50      ; and we are where we started from
```

defines a rectangular toolpath 100 units wide by 50 units high to the right and front of current tool position.

G90 turns off incremental coordinate mode

It is an error to have both G90 and G91 on the same line.

9.4.3 Polar coordinate mode – G15,G16 codes

G16 turns on the polar coordinate mode and sets the current tool position as the origin of the polar coordinate system. In polar coordinate mode the 'X' word is interpreted to mean the polar coordinate distance relative to the polar coordinate origin and 'Y' word is interpreted as the angle (in degrees) of the polar coordinate.

In incremental mode 'X' and 'Y' are interpreted relative to the previous distance and angle, not the current Cartesian X,Y position.

The following example defines a hexagonal tool path where each side of the hexagon is 10 units long.

```
G16      ; turn on polar mode
G91      ; turn on incremental mode
X0 Y0    ; 'reset' distance and angle for incremental mode
X10 Y60  ; Cut the 1st side
X10 Y60  ; ... and 2nd side
X10 Y60  ; ... and 3rd
X10 Y60  ; ... 4th
X10 Y60  ; ... 5th
X10 Y60  ; 6th side and back to where we stared from
```

Following example the defines a pentagonal tool path with radius of 20 units.

```
G16      ; turn on polar mode
G90      ; turn off incremental mode
X20  Y72  ;
X20  Y144 ;
X20  Y216 ;
X20  Y288 ;
X20  Y360 ;
```

G15 turns off the polar coordinate mode.

It is an error to have both G15 and G16 on the same line.

9.4.4 Temporary coordinate system offsets – G52

The G52 X# Y# Z# A# B# C# code sets the temporary coordinate offsets for the given axes to the given values. The offsets for axes that are not specified remain at their previous values.

9.4.5 Temporary coordinate system offsets – G92,G92.1,G92.2,G92.3 codes

All these codes are legacy features that are best left unused.

As all G52 and G92 codes all use the same mechanism mixing them requires extreme care, one more reason to leave all this well alone!

G92 X# Y# Z# A# B# C# sets the temporary coordinate offsets for the given axes so that the current tool position has the given coordinates.

G92.1 saves the temporary offsets to G-code parameters 5211..5216.

G92.2 clears the temporary offsets.

G92.3 restores the temporary offsets from the parameters 5211..5216.

9.4.6 Coordinate system rotation – G68,G69 codes

G68 A# B# I# R# sets the coordinate system rotation.

The 'A' and 'B' specify in the local coordinate system the X,Y coordinates around which the coordinate system is rotated.

The 'R' word specifies the rotation in degrees, positive values giving counter clockwise rotation when viewed down from positive Z-axis i.e. looking down at the work piece.

If the 'I' word is present then the 'R' word value is treated as an increment to the current rotation, the value of 'I' word is ignored.

Rotation is only available in the XY-plane. Rotation can only be turned on if the active plane is XY (G17).

G69 turns off the coordinate system rotation.

It is an error if 'A', 'A' or 'R' is not specified.

It is an error to have both G68 and G69 on the same line.

9.4.7 Active plane – G17,G18,G19 codes

The arc interpolation i.e. arc cutting ('G2' and 'G3') works by calculating a circular path in the active plane which is one of the the main coordinate planes XY,XZ or YZ plane.

The 'G17' sets the active plane to XY-plane.

The 'G18' sets the active plane to XZ-plane.

The 'G19' sets the active plane to YZ-plane.

It is an error to use more than one of G17,G18 or G19 on the same line.

It is an error to program G18 or G19 if the coordinate system rotation G(is on.

9.4.8 Tool length compensation – G43,G44,G49 codes

G43 H# sets the tool length compensation based on the tool number specified with the 'H' word and the tool length of set up for that tool in the Tool Setup panel.

G44 H# works the same as G43 but it expect that the length values in tool set up are negative, this should not be used and is provided for compatibility only.

A 'H' value of 0 can be used to turn off tool length compensation and is equivalent to the G49 command.

It is an error 'H' word is missing, is not an integer, is negative or larger than the number of tools EazyCNC supports.

It is an error more than one of G43,G44 and G49 on the same line.

G49 turns the tool length compensation off by setting it to 0.0 value.

9.4.9 Work/fixture offsets – G54,G55,G56,G57,G58,G59 codes

Any of the six first work/fixture coordinates systems/offsets can be selected with the G54...G59 codes. The G54 selects the first i.e. number one coordinate system specified in the Work Offsets panel.

G59 P* selects the work/fixture coordinate system specified with the 'P' word. The 'P' word is optional and if not given it behaves as described above.

It is an error the 'P' word is given with G59, is not an integer, is smaller than 1 or larger than the number of work/fixture coordinate systems EazyCNC supports.

9.4.10 Absolute coordinates – G53 code

If a line that causes linear interpolation (i.e. implicit or explicit G0 or G1 command) contains the G53 command then all the coordinates on that line are treated as absolute coordinates without applying any offsets or rotations. Scaling and cutter radius compensation are applied regardless if they are enabled.

9.4.11 Cutter radius compensation – G40,G41,G4 codes

EazyCNC can adjust the programmed tool path automatically to compensate for the non-negligible width of the cutter. While this works the cutter compensation is best carried in the CAM software that you should be using to create the G-code program.

When you use the G-code cutter radius compensation you program your tool paths as if you were cutting the outline of the part with an infinitely thin cutter i.e. the XYZ coordinates specify the outline of the part to be cut.

Of course the real cutter has a substantial size so you need to tell EazyCNC what is the cutter diameter and on which side the part outline the cutter should cut.

Use G41 to indicate that the cutter should stay to left of the toolpath, use this if you are cutting the outline of a part clockwise (or if you are cutting a hole counter clockwise).

Use G42 to indicate that the cutter should stay to the right.

Left and right are defined as if you were riding on the cutter and facing the direction of the travel.

Note that when you turn on the cutter compensation it will only affect the next movement of the tool ie the tool does *not* move from where it is when you turn on the compensation, rather the next position will be offset by the tool radius and the next move will then move from the current position to that compensated position. Therefore you should always plan a move-in movement when you turn on the compensation.

To turn off the compensation use G40.

There are several ways you can specify the tool/cutter radius. Following shows them for G41 but G42 works just the same, only the compensation is taken to the right.

To turn on the compensation to the left and use the tool/cutter diameter stored in the tool table for the currently selected tool (as specified with the T-word) use G41.

To turn on the compensation to the left and use the tool/cutter diameter stored in the tool table use G41 D#, where the D word specifies the number of the tool in the tool table.

To explicitly set the compensation to the left with given amount of compensation use G41 P#, where the P word specifies the *radius* of the cutter.

9.4.12 Feedrate mode – G93, G94, G95 codes

The EazyCNC does *not* support the inverse time feedrate mode G93 *nor* the units per ref feedrate mode G95.

The G94 code programs the feed per minute mode in which axes movements are carried out so that the tool moves at the rate specified with the F-word inches or millimeters per minute depending on which length unit mode, G20 or G21, is in effect.

It is an error to use G93 or G95 code.

G40 *nor*

9.4.13 Feedrate override on/off – M48, M49 codes

The feed override that the machine operator can adjust during machining, see Section 7.13, can be turned on or off in the G-code program, but programming it in G-code does not prevent the operator from turning it on and off again.

The idea is that the G-code programmer knows the best what feedrate the part should be cut but sometimes it is necessary to adjust or fine tune that while machining.

The actual override percentage *cannot* be set with G-codes.

The M48 code turns the feed override on.

The M49 code turns the feed override off.

It is an error to have both M48 and M49 codes on the same line.

9.4.14 Tool change – M6 code

EazyCNC does not support the M6 tool change command but ignores it.

9.4.15 Tool length compensation – G43,G44,G49 codes

The length compensation basically works by just offsetting the Z-axis value so that there will be room for the specified tool length between the spindle/chuck and the work piece.

To turn off the tool length compensation program G49.

To turn on and set the tool length compensations from the length stored in the tool table use G43 H#, where the H-word specifies the number of the tool in the tool table. If the H-word is zero i.e. specifies no tool number then compensation is set to zero and effectively turned off, in fact this equivalent to programming G49.

The G44 works the same as G43 but expects that the length values in the tool table are negative. Since you can't enter negative values this is provided for compatibility with existing practice only.

It is an error if the H-word value is negative or larger than the number of tool supported.

It is an error to have more than one of these G-codes on the same line.

9.4.16 Path mode – G61,G61.1,G64 codes

In any CNC system there are basically two options how the system tries to follow the specified tool path. Either the system tries to obey the specified coordinates i.e. position or the specified speed. You can't have both at the same time, think about it: if you need to move from point A to point B at a given speed you would need infinite acceleration and deceleration at the beginning and end of travel.

The path mode along with the machine limits, Section 6.9, determine how EazyCNC calculates the actual tool path.

The set exact path mode program G61, in this mode the path follows the specified path as closely as possible which results in the axes velocities coming to a complete stop at the end of movement. This is fine when milling but slows down the machining, especially if a lot of small cuts are used. When cutting with a torch stopping at the end of the movements causes local 'burn outs' so this is not an acceptable mode for plasma cutting.

The set best speed mode program G64, in this mode the path tries still to follow the specified path but is allowed to deviate from it by as much as the 'Path tolerance', Section 6.9.3, allows trading accuracy for speed. Because of limited path lookahead many small cuts in a row still result in a severely limited speed, so when programming tool paths for plasma try to avoid small movements.

For all practical purposes G61.1 performs the same as G61 and this is supported for compatibility only.

It is an error to have more than one of these commands in the same line.

9.4.17 Incremental XYZ mode – G90,G91 codes

The axis words, 'X', 'Y', 'Z' etc can be interpreted either as coordinates or as a change of coordinates relative to the previous coordinates.

To treat coordinates as 'absolute' positions in the local/current coordinate system program G90. This is the usual way to specify coordinates in G-code programs.

To turn on the incremental interpretation program G91, in this mode the axis word values are treated as increments to the previous axis word values.

It is an error to have both of these codes in the same line.

9.4.18 Incremental IJK mode – G90.1,G91.1 codes

Interpretation of the IJK values in the arc interpolation codes G2 and G3 can be either absolute or incremental.

To set the absolute interpretation use G90.1, in this mode the the IJK words specify the center coordinates in the local/current coordinate system.

To set the incremental interpretation use G91.1, in this mode the the IJK words specify the center coordinates relative to the starting point of the arc.

Incorrect settings of this mode will usually result in large and incorrectly oriented arcs in the toolpath display.

You can also set this mode in the Mach Setup screen, see Section [6.6.2](#).

It is an error to have both of these codes in the same line.

9.4.19 Set tool table – G10 L1 code

It is possible change tool table entries with G-code commands. This makes it possible to maintain different tool sets.

G10 L1 P# A# Z# X# sets the tool table entry for tool number specified by the P-word. The Z-word sets the tool height and the X-word sets the tool *radius*; the A-word, tool tip radius, is ignored but accepted for compatibility reasons.

The A,Z and X -words are all optional and it is ok to leave any or all of them out.

It is an error if the P word is missing, smaller than one or larger than the number of tools EazyCNC supports.

It is an error if the L word is missing.

9.4.20 Set work/fixtures offsets – G10 L2 code

It is possible to set the work/fixtures offsets in G-code. This makes it possible to maintain multiple different jig set ups easily.

G10 L2 P# X# Y# Z# A# B# C# sets the work/fixtures offsets for the fixture number specified with the P word. The axis words X,Y etc specify the corresponding offsets. It is ok not specify all or none of the axis and those that are not specified are left untouched.

It is an error if the P word is missing, smaller than one or larger than the number of work/fixtures offsets EazyCNC supports.

It is an error if the L word is missing.

9.5 Canned Drilling Cycles

Canned drilling cycles (G73, G81, G82, G83 and G85) all work more or less the same with detail variations to help with real world drilling issues such chip breaking etc.

The canned cycles are modal i.e. once a command is given it causes repeated execution of the cycle for each line that specifies an X/Y position until the mode is cancelled with 'G80' or some other modal movement command.

In the following in the interest of simplicity canned cycles are described as working in the XY plane with the drilling happening Z directions. However they work equally well in any other plane (G17, G18, G19).

Note that in the following description when I talk about 'depth' it really refers to a Z-position, not depth as you as a machinist would define the depth of a hole.

All canned drilling commands accept an optional repeat count specified with the L-word.

At first sight this seems silly, why would you drill the same hole multiple times? Of course you don't but when combined with incremental distance mode ('G91') it allows simple commands to produce regular lines or arcs of holes.

If you plan to use the incremental distance mode note that the first hole is drilled after the increment has been applied so it does not end up where you positioned the tool.

Interweb has a lot of great illustrations about canned cycles so I will leave a more graphical presentation to more capable hands.

It is an error if tool radius compensation is on when a canned cycle command is given.

It is an error if retraction level R is greater than initial Z-level.

It is an error if hole bottom level is higher than the retraction plane R.

Below is a simplified description how the different canned cycles differ from each other.

G81 - Drilling

This is the mother of all drilling cycles, a single peck move down to the desired depth at feedrate and rapid retract.

G83 - Peck Drilling

Same as G81 but makes a multiple increasingly deeper pecks at feedrate to drill a deep hole with full rapid retraction between pecks to clear the hole from chips.

G73 - High Speed Peck Drilling

Same as G83 but to speed things up the retraction is shorter as the retraction is for just breaking the chip.

G82 - Spot Facing

Same as G81 drilling but the tool dwells at the bottom of the hole for a specified time before retracting.

G85 - Boring

Same as G81 drilling but the retraction as well as the drilling is done at feedrate rather than as a rapid motion.

9.5.1 Cancel Canned Cycle – G80 code

The command 'G80' cancels canned cycle modal mode.

9.5.2 Canned Cycle Return level – G98,G99 codes

After each hole the drill returns to either to the Z-position it was before the cycle started or to the position set by the R-word.

Use 'G98' to cause the tool to return to the original Z-position after the cycle.

Use 'G99' to cause the tool to return to level set by the R-word.

9.5.3 High Speed Peck Drilling – G73 code

G73 X# Y# Z# R* Q* F# L# command is used to drill a hole to depth set by the Z-word in location specified with the X and Y -words with pecks of distance set by the Q-word and retracting the drill between pecks to depth set by the R-word.

Pecking is performed at feedrate set by the F-word, retraction happens at maximum velocity.

An optional repeat count can be given with the L-word.

9.5.4 Drilling – G81 code

G81 X# Y# Z# R* F# L# command is used to drill a hole to depth set by the Z-word in location specified with the X and Y -words with single peck and then retract.

Pecking is performed at feedrate set by the F-word, retraction always happens at maximum velocity.

An optional repeat count can be given with the L-word.

9.5.5 Spot Facing – G82 code

G82 X# Y# Z# R* F# P# L# command is used to drill a hole to depth set by the Z-word in location specified with the X and Y -words with single peck and then retract.

Pecking is performed at feedrate set by the F-word, retraction always happens at maximum velocity.

The drill will dwell at bottom of the hole a for time set by the P-word if given.

An optional repeat count can be given with the L-word.

9.5.6 Peck Drilling – G83 code

G83 X# Y# Z# R* Q* F# L# command is used to drill a deep hole to depth set by the Z-word in location specified with the X and Y -words with pecks of distance set by the Q-word and retracting the drill fully between pecks to depth set by the R-word.

Pecking is performed at feedrate set by the F-word, retraction always happens at maximum velocity.

An optional repeat count can be given with the L-word.

9.5.7 Boring – G85 code

G85 X# Y# Z# R* Q* F# L# command is used to drill a hole to depth set by the Z-word in location specified with the X and Y -words with single move and then retract.

Both drilling and retraction is performed at feedrate set by the F-word.

An optional repeat count can be given with the L-word.

9.6 Using subroutines – M98/M99

9.6.1 Call subroutine – M98 code

It is possible to create subroutines in a G-code program.

A subroutine is any continuous sequence of G-code lines that ends with the M99 G-code.

The first line of subroutine should contain the O-word, to give the subroutine an id-number. When calling the subroutine with the M98 code a P word with the same id-number must be used.

Typically subroutines are placed at the end of a G-code file after a M2, M30 or M99 code so that the normal G-code execution does not reach them.

Subroutines can be nested.

A subroutine can be in the same file (recommend) where the calling code is or in a separate file.

An optional repeat count can be specified with the Q or L words.

To call a subroutine use one of the following forms.

M98 P1234 calls a subroutine that starts with 01234 in the same file as the calling M98 code.

M98 P1234 (example.txt) calls a subroutine that starts with 01234 in a separate file called 'example.txt' .

M98 P2000 L10 calls ten times a subroutine that starts with 02000 in the same file as the calling M98 code.

It is an error if the P word is missing.

It is an error if the both L and Q words are used.

It is an error if the L or Q word specifies a count smaller than one.

It is an error if

9.6.2 End of subroutine – M99 code

M99 returns G-code execution to the place whence the subroutine was called from.

It is an error this code is executed when no subroutine (M98) has been called.

.1 Appendices

Appendix A

Revision History

EazyCNC 2.0.36x1 Revision 1

Following subjects have been updated/added to reflect the changes in the software.

Jogging using the new step jog modes Using electronic probe to set Work Offsets Using auto tool setter to set Tool Length Using an Manual Pulse Generator / CNC Pendant List of supported G-codes (Thank you Erik!) WHB04 Manual Pulse Generator / Pendant reference WHB04B Manual Pulse Generator /Pendant reference

EazyCNC 2.0.18-X Revision 1

Added description of canned cycles. Added description of user function.

EazyCNC 2.0.0.X Revision 1

Updated too many things to list here - mainly related to the Axis Setup and Mach Setup screens.

—

EazyCNC 0.0.0.26a Revision 2

Added this revision history to this manual.

In section improved the description of problems associated with the virtual serial port.

Added section [6.2](#) on how to set up the permission for the virtual serial port in Linux.

In section [7.7](#) added references to the corresponding UI setup sections.

Add description of the ABCXYZ button

Add description of the missing jog button

Appendix B

Supported G-codes

Table B.1: A simple longtable example

Code	Description	Modal	Section	Page
G0	Rapid position	Y	9.3.12	96
G1	Linear move	Y	9.3.13	96
G2	Clockwise Arc	Y	9.3.14	96
G3	Counter clockwise Arc	Y	9.3.15	97
G4	Dwelling	N	9.3.9	94
G9	Exact stop	N	-	-
G10 L1	Set Tool table	N	9.4.19	105
G10 L2	Set work/fixture offsets	N	9.4.20	105
G12	Clockwise Circle	Y	-	-
G13	Counter Clockwise Arc	Y	-	-
G15	Turn off Polar mode	Y	9.4.3	99
G16	Turn on polar mode	Y	9.4.3	99
G17	Set active plane to XY	Y	9.4.7	101
G18	Set active plane to XZ	Y	9.4.7	101
G19	set active plane to YZ	Y	9.4.7	101
G20	Set imperial(inch) mode	Y	9.3.3	93
G21	Set metric (mm) mode	Y	9.3.3	93
G28	Return zero	N	-	-
G30	2nd, 3rd, 4th Zero Return	N	-	-
G31	Perform probing move	N	9.3.16	97
G32	Treading	N	-	-
G38.2	Probing	N	-	-
G40	Turn radius compensation Off	Y	9.4.11	102
G41	Radius compensation to left	Y	9.4.11	102
G42	Radius compensation to right	Y	9.4.11	102
G43	Set Tool length compensation	Y	9.4.15	104
G44	Set Tool length compensation	Y	9.4.15	104
G49	Cancel Tool length compensation	Y	9.4.15	104
G50	Turn OFF scaling	Y	9.4.1	98
G51	Turn ON scaling	Y	9.4.1	98
G52	Temporary system Offset	Y	9.4.4	100
G53	Absolute coordinates	N	9.4.10	102

Continued on next page

Table B.1 – *Continued from previous page*

Code	Description	Modal	Section	Page
G54	Work/Fixtures offsets	Y	9.4.9	102
G55	Work/Fixtures offsets	Y	9.4.9	102
G56	Work/Fixtures offsets	Y	9.4.9	102
G57	Work/Fixtures offsets	Y	9.4.9	102
G58	Work/Fixtures offsets	Y	9.4.9	102
G59	Work/Fixtures offsets	Y	9.4.9	102
G60	Unidirection approach	N	-	-
G61	Exact stop mode	Y	9.4.16	104
G61.1	Path mode	Y	9.4.16	104
G64	Constant velocity mode	Y	9.4.16	104
G65	Macro call	N	-	-
G66	Macro modal call	Y	-	-
G67	Cancel modal macro call	Y	-	-
G68	Set Coord. system rotation	Y	9.4.6	100
G69	Turn off coord. system rotation	Y	9.4.6	100
G73	High speed peck drilling	Y	9.5.3	107
G74	Reverse tapping	Y	-	-
G76	Fine boring	Y	-	-
G80	Cancel Canned Cycle	Y	9.5.1	107
G81	Driling	Y	9.5.4	107
G82	Spot facing	Y	9.5.5	108
G83	Deeep Hole Peck drilling	Y	9.5.6	108
G84	Tapping	Y	-	-
G85	Boring,retract at feed, spindle on	Y	9.5.7	108
G86	Boring, retract at rapid, spindle off	Y	-	-
G87	Back boring	Y	-	-
G88	Boring, manual retract	Y	-	-
G89	Boring ,dwell,retract at feed, spindle on	Y	-	-
G90	Incremental coord. mode OFF	Y	9.4.17	104
G91	Incremental coord. Mode ON	Y	9.4.17	104
G90.1	Absolute/Incremental IJK mode	Y	9.4.18	105
G91.1	Absolute/Incremental IJK mode	Y	9.4.18	105
G92	Local Coord. System setting	Y	9.4.5	100
G92.1	Temporary systems offsets	Y	9.4.5	100
G92.2	Clear Temporary systems offsets	Y	9.4.5	100
G92.3	Restore Temporary systems offsets	Y	9.4.5	100
G93	Inverse time feed	Y	-	-
G94	Feed per minute	Y	9.4.12	103
G95	Feed per revolution	Y	-	-
G96	Constant surface speed	Y	-	-
G97	Constant RPM	Y	-	-
G98	Canned cycle, initial return point	Y	9.5.2	107
G99	Canned cycles R-point return	Y	9.5.2	107
M0	Mandatory Program stop		9.3.17	97
M1	Optional Program stop		9.3.17	97
M2	Program end		9.3.18	98
M6	Tool change (Not used)		-	-
M7	Mist cooling		9.3.7	94
M8	Flood cooling		9.3.7	94

Continued on next page

Table B.1 – *Continued from previous page*

Code	Description	Modal	Section	Page
M9	Stop cooling		9.3.7	94
M48	Feed override on		9.4.13	103
M49	Feed override Off		9.4.13	103
M98	Call subroutine		9.6.1	108
M99	End of subroutine		9.6.2	109

Appendix C

Supported MPG pendants

C.1 XHC WHB04 Pendant/MPG

EazyCNC supports a commercially available MPG named WHB04, see Figure C.1. This is a wireless model, a sister model called HB04 with wired USB connection is also available and it is supposed to be 100% compatible but this has not been tested.

The WHB04 pendant is not particularly excellent, the wheel sometimes misses pulses, the display update speed is nothing to write home about and the wireless link exhibits a glitch every now and then. But it is what we have at the moment.

Note worthy is also that WHB04 has a battery saving mode that kicks in about thirty seconds and stops the display from updating unless you wake the pendant up by pressing a button, turning a knob or moving the wheel.

Having said all that, it is still a useful device.

Figure C.1: WHB04 Pendant/MPG

C.1.1 WHB04 Controls

Figure C.2 shows a close up of the WHB keypad.

The two main controls of the MPG are the small axis selector knob you can see in the closeup and the large pulse wheel.

In general the axis selector selects which axis or other parameter is affected by the pulse wheel or buttons on the keypad.

For some functions setting the selector knob to 'Off' will make those functions apply to all axes at once.

C.1.2 WHB04 Display

Figure C.3 shows a close up of the WHB04 display.

Figure C.2: WHB03 Keypad

The display has DROs for three axes at a time. If the axis selector is in X, Y or Z position then the corresponding axis values are displayed in the DROs. If the selector is in A position then axis positions of the A, B and C axis are displayed.

The DROs in the 'MC' column are not used (to avoid confusion) and always display '0.000'

The DROs in the 'WC' column display the same DRO values as on the EazyCNC computer screen.

Note that you can NOT see more decimals on the pendant DRO than on the computer screen even though the pendant always displays three digits.

Next to the WC text to the right an 'inch' or 'mm' sign is shown and reflects whether the DRO values and wheel operate in inch or mm mode. This is controlled by the units selected for the DROs in EazyCNC.

Figure C.3: WHB04 Display

C.1.3 WHB04 Wheel

Every 'click' of the wheel moves the selected axis one step in the wheel direction. The speed at which the mill table, head or plasma torch moves is relative to how fast you turn the wheel.

In principle the wheel allows absolute (well incremental really) control of the axis position and speed. In practice the wheel sometimes misses pulses so turning the wheel ten clicks may only result in nine steps, always confirm by looking at the DROs.

Because it is possible to turn the wheel faster than the axis can move there is a windup prevention that prevents the wheel position from advancing too much beyond where the axis has advanced.

Because of the long chain of hardware and software that connects the pulse wheel to the axis stepper motor, the feel of control you get with the wheel is far from perfect. However it does allow you to control the axis position rather swiftly and accurately.

The 'step size' i.e. how much every wheel click moves milling table is displayed to the left of the 'WC' text. It is expressed as number of 1/1000th of the units selected for the DROs. Very much like the jogging step selection but separate from that.

In 'mm' mode the displayed text and step size are as follows:

x1000	1.000 mm
x100	0.100 mm
x10	0.010 mm
x0	1 stepper step

In 'inch' mode the displayed text and step size are as follows:

x100	0.100 inch
x10	0.010 inch
x1	0.001 inch
x0	1 stepper step

You change the step size with the 'STEP++' key, see below.

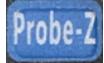
C.1.4 Step++ -key

Pressing this key shortly will advance the step size to the next *smaller* size. After 'x0' the step size reverts to the largest steps size ('x1000' for 'mm' mode and 'x100' for 'inch' mode).

A long press (over 1 seconds) will revert the step size to largest steps size.

Whenever the largest step size is selected a long 'beep' sound is emitted from the computer to alert the user.

C.1.5 Probe XY -key


Pressing this key has the same effect as pressing the -X or -Y Touch button in the Work Offsets screen when the 'Use PROBE to Touch' feature is enabled.

In other word this will perform a short probing move on the selected axis and as soon as the probe trips the movement stops and retracts and the selected axis work offset is set to the negative half value of the Probe Diameter parameter in the Work Offsets screen.

Thus this is a handy way to perform edge finding using a probe and the MPG.

Use the axis selector knog to select either X or Y axis. You can only probe on the left/front side of the work piece with this key.

C.1.6 'Probe Z' -key

Pressing this key has the same effect as pressing the Touch button in the Work Offsets / Set Z origin screen when the 'Use PROBE to Touch' feature is enabled.

In other word this will perform a short probing move on the Z axis axis and as soon as the probe trips the movement stops and retracts and the Z axis work offset is set to the Gage Height parameter in the Work Offsets screen.

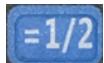
Thus this is a handy way to perform 'zero' the Z-axis with the probe.

C.1.7 Spindle -key

Pressing this key has the same effect as pressing the SPINDLE button on the computer screen.

In other words it toggles the spindle on and off.

C.1.8 Start/Pause -key


This key has the same effect as pressing alternatively the RUN and HOLD buttons on the computer screen.

C.1.9 Stop -Key

This key has the same effect as pressing the STOP button on the computer screen.

C.1.10 '=1/2' -key

Pressing this key has the same effect as pressing the Touch -X or Touch -Y button in the Work Offsets screen when the 'Use PROBE to Touch' feature is NOT enabled.

In other words the selected axis Work Offset is set to the negative half value of the Probe Diameter parameter in the Work Offsets screen.

Thus this is a handy way to perform edge finding manually with an edge finder and the MPG.

Use the axis selector knog to select either X or Y axis. You can only Touch on the left/front side of the work piece with this key.

C.1.11 'Goto Origin' -key

Pressing this key will cause the X and Y axis to jog to the zero position of the DROs.

C.1.12 '=0' -key

Pressing this key has the same effect as pressing the ZERO button in the selected axis.

Use the axis selector knob to select the affected axis, or set the axis selector knob to 'Off' to ZERO all axis.

C.1.13 Safe Z -key

Pressing this key will cause the Z-axis to move to the Safe Z value set in the Axis Setup / Axis Z.

C.1.14 Reset -key

Pressing this has the same effect as pressing HOME button on the computer screen.

Use the axis selector knob to select the affected axis, or set the axis selector knob to 'Off' to HOME ALL axis.

A long press will force HOME ALL action regardless of the axis selector knob position.

C.1.15 Rewind -key

Pressing this key will change the currently selected tool to the next tool number, in other words this has the same effect as L-word in G-code. Note that it does not actually cause any tool change but does effect the tool offset, if it is enabled with G43 code.

Long press will reset the current tool to tool number 1.

Whenever the tool number 1 is selected a long 'beep' sound is emitted from the computer to alert the user.

This key is mainly intended to help setting up tool length without touching the computer keyboard.

C.2 XHC WHB04B Pendant / MPG

Figure C.4: WHB04B Pendant / MPG

EazyCNC supports a commercially available MPG named WHB04B (note the B at then end of the type code), see Figure C.4. This actually comes in two varieties, WHB04B-4 for use with four axis and WHB04B-6 for use with six axis.

Out of the box this pendant (or rather EazyCNC) support a much smaller set of functionality than for example the WHB04. This is because the pendant has a smaller number of buttons and even smaller number of usefully labeled buttons.

C.2.1 WHB04B Controls

The three main controls of the MPG are the axis selector knob, step size selector knob and the large pulse wheel.

In general the axis selector selects which axis is affected by the pulse wheel or buttons on the keypad.

The step size selector change how fast the wheel moves the axis.

The keypad is used to activate EazyCNC functions.

C.2.2 Display

Figure C.5 shows a close up of the WHB04B display.

The display has DROs for three axes at a time. If the axis selector is in X,Y or Z position then the corresponding axis values are displayed in the DROs. If the selector is in A position then axis positions of the A, B and C axis are displayed.

Figure C.5: WHB04B Display

An asterisk ('*') in front of an axis letter indicates that that axis has is currently selected by the Axis Selector knob.

The DROs display the same DRO values as on the EazyCNC computer screen.

Note that you can NOT see more decimals on the pendant DRO than on the computer screen eventhough the pendant always displays four decimal digits.

Note that if the Axis Selector is in the OFF position then EazyCNC is not able to update the display at all.

On the top row alternatively either the step selector percentage is displayed or feed ('F') or spindle ('S') is displayed. The percentage makes little sense but can be used as a reminder of the selected wheel step size.

To display the feed or spindle speed you need to press the Feed +/- or Spindle +/- key. If the corresponding feed or spindle speed is not currently displaying when you press the key then the display will switch and the key is ignored, i.e. it will not change the feed or spindle speed.

When the pendant is powered up you may see the text 'RESET' on the top row. To get rid of that you have to press any button on the key pad and rotate the step selector knob. This makes no sense but it is what it is and EazyCNC cannot do anything about that.

C.2.3 Keypad

Figure C.6 shows a close up of the WHB04B keypad.

The keypad has 15 keys plus the orange 'Fn' key which alter the functions of those keys that have an orange label on them. To activate the 'orange' function you need to hold the 'Fn' key down while pressing the intended key.

Note that the functions associated with the keys are not fixed and you can change them in the Mach Setup / Shortcuts screen, see section 6.10,

For inspiration of functions you could assign to the keys I suggest reading the WHB04 appendix which lists number of useful functions that are available out-of-the-box with that pendant.

C.2.4 Axis Selector

Figure C.6: WHB04B Keypad

Figure C.7: WHB04B Axis Selector

C.2.5 WHB04 Wheel

Every 'click' of the wheel moves the selected axis one step to the wheel direction. The speed at which the mill table, head or plasma torch moves is relative to how fast you turn the wheel.

In principle the wheel allows absolute (well incremental really) control of the axis position and speed. In practice the wheel sometimes misses pulses so turning the wheel ten clicks may only result in nine steps, always confirm by looking at the DROs.

Because it is possible to turn the wheel faster than the axis can move there is a windup prevention that prevents the wheel position from advancing too much beyond where the axis has advanced.

Because of the long chain of hardware and software that connects the pulse wheel to the axis stepper motor, the feel of control you get with the wheel is far from perfect. However it does allow you to control the axis position rather swiftly and accurately.

The step size that is used when you turn the wheel depends on the Step Selector, see below.

C.2.6 Step Selector

Figure C.8: WHB04B Step Selector

The Step Selector has some confusing labeling, you should go by the labels in white.

Depending on whether you are working with inches or millimeters (see Mach Setup / Screen / Units) the wheel click/step size varies as shown in the table below.

Selector position	Units = mm	Units = inch
0.001 / 2%	0.001 mm	0.001" (0.0254 mm)
0.01 / 5%	0.01 mm	0.001" (0.254 mm)
0.1 / 10%	0.1 mm	0.001" (2.54 mm)
1.0 / 30%	1.0 mm	minimal
LEAD%	minimal	minimal

In above 'minimal' indicates smallest possible step, for example if in your Axis Setup / Step/mm you have 400 step/mm then the minimal step size is 1/400 mm i.e. 0.0025 mm.

Note that if the theoretical step size as per above table results in a step that is smaller than 'minimal' then the minimal step is selected.

For safety the "1.0" selector position does not result in one inch step size in inch mode.

C.2.7 Reset -Key

Pressing this has the same effect as pressing HOME button on the computer screen.

Use the axis selector knob to select the affected axis, or set the axis selector knob to 'Off' to HOME ALL axis.

A long press will force HOME ALL action regardless of the axis selector knob position.

C.2.8 Stop -Key

This key has the same effect as pressing the STOP button on the computer screen.

C.2.9 Start / Run -key

This key has the same effect as pressing alternatively the RUN and HOLD buttons on the computer screen.

C.2.10 Macro-1 [Feed+]-key

If the 'F' is not displayed on the pendant display then the key press is ignored and the display changes to display the feed speed.

When pressed together with the 'Fn' key this button has the same effect as pressing the the '+' key in the Feed/Override panel on the screen.

When pressed without the 'Fn' key this key has no function unless you assign one to it.

C.2.11 Macro-2 [Feed-]-key

If the 'F' is not displayed on the pendant display then the key press is ignored and the display changes to display the feed speed.

When pressed together with the 'Fn' key this button has the same effect as pressing the the '-' key in the Feed/Override panel on the screen.

When pressed without the 'Fn' key this key has no function unless you assign one to it.

C.2.12 Macro-3 [Spindle+]-key

If the 'S' is not displayed on the pendant display then the key press is ignored and the display changes to display the spindle speed.

When pressed together with the 'Fn' key this button has the same effect as pressing the the '+' key in the Spindle panel on the screen.

When pressed without the 'Fn' key this key has no function unless you assign one to it.

C.2.13 Macro-4 [Spindle-]-key

If the 'S' is not displayed on the pendant display then the key press is ignored and the display changes to display the spindle speed.

When pressed together with the 'Fn' key this button has the same effect as pressing the the '-' key in the Spindle panel on the screen.

When pressed without the 'Fn' key this key has no function unless you assign one to it.

C.2.14 Macro-5 [M-HOME]-key

This key has no function unless you assign one to it.

C.2.15 Macro-6 [Safe-Z]-key

Pressing this key will cause the Z-axis to move to the Safe Z value set in the Axis Setup / Axis Z.

C.2.16 Macro-7 [W-HOME]-key

Pressing this key will cause the X and Y axis to jog to the zero position of the DROs.

C.2.17 Macro-8 [S-ON/OFF]-key

Pressing this key has the same effect as pressing the SPINDLE button on the computer screen.

In other words it toggles the spindle on and off.

C.2.18 Fn -key

This key together with some other is used to evoke the secondary function of that key. To use that press and hold the 'Fn' key down while pressing the other key.

C.2.19 Macro-9 [Probe-Z]-key

Pressing this key has the same effect as pressing the Touch button in the Work Offsets / Set Z origin screen when the 'Use PROBE to Touch' feature is enabled.

In other word this will perform a short probing move on the Z axis axis and as soon as the probe trips the movement stops and retracts and the Z axis work offset is set to the Gage Height parameter in the Work Offsets screen.

Thus this is a handy way to perform 'zero' the Z-axis with the probe.

C.2.20 Macro-10

This key has no function unless you assign one to it.

C.2.21 Continuous -key

This key has no function unless you assign one to it.

C.2.22 Step -key

This key has no function unless you assign one to it.

*** The End ***